Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 8: 672257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046421

RESUMO

Objectives: Excessive oxygen (O2) administration may have a negative impact on tissue perfusion by inducing vasoconstriction and oxidative stress. We aimed to evaluate the effects of different inhaled oxygen fractions (FiO2) on macro-hemodynamics and microvascular perfusion in a rat model. Methods: Isoflurane-anesthetised spontaneously breathing male Wistar rats were equipped with arterial (carotid artery) and venous (jugular vein) catheters and tracheotomy, and randomized into three groups: normoxia (FiO2 21%, n = 6), hyperoxia (FiO2 100%, n = 6) and mild hypoxia (FiO2 15%, n = 6). Euvolemia was maintained by infusing Lactate Ringer solution at 10 ml/kg/h. At hourly intervals for 4 h we collected measurements of: mean arterial pressure (MAP); stroke volume index (SVI), heart rate (HR), respiratory rate (by means of echocardiography); arterial and venous blood gases; microvascular density, and flow quality (by means of sidestream dark field videomicroscopy on the hindlimb skeletal muscle). Results: MAP and systemic vascular resistance index increased with hyperoxia and decreased with mild hypoxia (p < 0.001 in both cases, two-way analysis of variance). Hyperoxia induced a reduction in SVI, while this was increased in mild hypoxia (p = 0.002). The HR increased under hyperoxia (p < 0.05 vs. normoxia at 3 h). Cardiax index, as well as systemic O2 delivery, did not significantly vary in the three groups (p = 0.546 and p = 0.691, respectively). At 4 h, microvascular vessel surface (i.e., the percentage of tissue surface occupied by vessels) decreased by 29 ± 4% in the hyperoxia group and increased by 19 ± 7 % in mild hypoxia group (p < 0.001). Total vessel density and perfused vessel density showed similar tendencies (p = 0.003 and p = 0.005, respectively). Parameters of flow quality (microvascular flow index, percentage of perfused vessels, and flow heterogeneity index) remained stable and similar in the three groups. Conclusions: Hyperoxia induces vasoconstriction and reduction in skeletal muscle microvascular density, while mild hypoxia has an opposite effect.

2.
Ann Intensive Care ; 9(1): 135, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31797105

RESUMO

BACKGROUND: Polyclonal or IgM-enriched immunoglobulins may be beneficial during sepsis as an adjuvant immunomodulatory therapy. We aimed to test whether the infusion of IgM-enriched immunoglobulins improves microvascular perfusion during sepsis. METHODS: Single-centre, randomized, double-blind, placebo-controlled phase II trial including adult patients with a diagnosis of sepsis or septic shock for less than 24 h. Patients received an intravenous infusion of 250 mg/kg (5 mL/kg) per day of IgM-enriched immunoglobulins (Pentaglobin, n = 10) for 72 h or placebo (NaCl 0.9%, n = 9). At baseline and after 24 and 72 h of infusion, the sublingual microcirculation was assessed with Incident Dark Field videomicroscopy. Thenar near-infrared spectroscopy (NIRS) was applied with a vascular occlusion test to assess tissue oxygenation and microvascular reactivity. Levels of interleukin (IL) 1-beta, IL-6, IL-8, IL-10 and tumour necrosis factor alpha were measured in the serum. RESULTS: The perfused vessel density (PVD) for small vessels (diameter < 20 micron) increased in the Pentaglobin group (from 21.7 ± 4.7 to 25.5 ± 5.1 mm/mm2) and decreased in the placebo group (from 25 ± 5.8 to 20.7 ± 4.1 mm/mm2, p for interaction < 0.001, two-way analysis of variance). The absolute between-group difference at 72 h was 4.77 (standard error 2.34), p = 0.140. The microvascular flow index for small vessels increased at 24 h in the Pentaglobin group (from 2.68 [2.38-2.78] to 2.93 [2.82-3], p < 0.01) and decreased at 72 h in the placebo group (from 2.83 [2.60-2.97] to 2.67 [2.48-2.73], p < 0.05). Changes in general parameters, cytokines and NIRS-derived parameters were similar between the two groups, except for IL-6 and IL-10 that significantly decreased at 72 h only in the Pentaglobin group. CONCLUSIONS: A 72-h infusion of IgM-enriched immunoglobulins (Pentaglobin) in patients with sepsis or septic shock may be associated with an increase in sublingual microvascular perfusion. Further studies are needed to confirm our findings. Trial registration NCT02655133, www.ClinicalTrials.gov, date of registration 7th January 2016, https://www.clinicaltrials.gov/ct2/show/NCT02655133.

3.
Ann Intensive Care ; 8(1): 64, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29766322

RESUMO

BACKGROUND: Until now, the prognostic value of microcirculatory alterations in critically ill patients has been mainly evaluated in highly selected subgroups. Aim of this study is to monitor the microcirculation daily in mixed group of Intensive Care Unit (ICU)-patients and to establish the association between (the evolution of) microcirculatory alterations and outcome. METHODS: This is a prospective longitudinal observational single-centre study in adult patients admitted to a 12-bed ICU in an Italian teaching hospital. Sublingual microcirculation was evaluated daily, from admission to discharge/death, using Sidestream Dark Field imaging. Videos were analysed offline to assess flow and density variables. Laboratory and clinical data were recorded simultaneously. A priori, a Microvascular Flow Index (MFI) < 2.6 was defined as abnormal. A binary logistic regression analysis was performed to evaluate the association between microcirculatory variables and outcomes; a Kaplan-Meier survival curve was built. Outcomes were ICU and 90-day mortality. RESULTS: A total of 97 patients were included. An abnormal MFI was present on day 1 in 20.6%, and in 55.7% of cases during ICU admission. Patients with a baseline MFI < 2.6 had higher ICU, in-hospital and 90-day mortality (45 vs. 15.6%, p = 0.012; 55 vs. 28.6%, p = 0.035; 55 vs. 26%, p = 0.017, respectively). An independent association between baseline MFI < 2.6 and outcome was confirmed in a binary logistic analysis (odds ratio 4.594 [1.340-15.754], p = 0.015). A heart rate (HR) ≥ 90 bpm was an adjunctive predictor of mortality. However, a model with stepwise inclusion of mean arterial pressure < 65 mmHg, HR ≥ 90 bpm, lactate > 2 mmol/L and MFI < 2.6 did not detect significant differences in ICU mortality. In case an abnormal MFI was present on day 1, ICU mortality was significantly higher in comparison with patients with an abnormal MFI after day 1 (38 vs. 6%, p = 0.001), indicating a time-dependent significant difference in prognostic value. CONCLUSIONS: In a general ICU population, an abnormal microcirculation at baseline is an independent predictor for mortality. In this setting, additional routine daily microcirculatory monitoring did not reveal extra prognostic information. Further research is needed to integrate microcirculatory monitoring in a set of commonly available hemodynamic variables. Trial registration NCT 02649088, www.clinicaltrials.gov . Date of registration: 23 December 2015, retrospectively registered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA