Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 10361, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991759

RESUMO

Despite the ecological and societal importance of large rivers, fish sampling remains costly and limited to specific habitats (e.g., river banks). Using an eDNA metabarcoding approach, we regularly sampled 500 km of a large river (Rhône River). Comparisons with long-term electrofishing surveys demonstrated the ability of eDNA metabarcoding to qualitatively and quantitatively reveal fish assemblage structures (relative species abundance) but eDNA integrated a larger space than the classical sampling location. Combination of a literature review and field data showed that eDNA behaves in the water column like fine particulate organic matter. Its detection distance varied from a few km in a small stream to more than 100 km in a large river. To our knowledge, our results are the first demonstration of the capacity of eDNA metabarcoding to describe longitudinal fish assemblage patterns in a large river, and metabarcoding appears to be a reliable, cost-effective method for future monitoring.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/análise , Peixes/genética , Rios/química , Animais , Código de Barras de DNA Taxonômico/economia , Ecossistema , Monitoramento Ambiental/economia , Monitoramento Ambiental/métodos , Europa (Continente)
2.
PLoS One ; 11(6): e0157366, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27359116

RESUMO

In the last few years, the study of environmental DNA (eDNA) has drawn attention for many reasons, including its advantages for monitoring and conservation purposes. So far, in aquatic environments, most of eDNA research has focused on the detection of single species using species-specific markers. Recently, species inventories based on the analysis of a single generalist marker targeting a larger taxonomic group (eDNA metabarcoding) have proven useful for bony fish and amphibian biodiversity surveys. This approach involves in situ filtering of large volumes of water followed by amplification and sequencing of a short discriminative fragment from the 12S rDNA mitochondrial gene. In this study, we went one step further by investigating the spatial representativeness (i.e. ecological reliability and signal variability in space) of eDNA metabarcoding for large-scale fish biodiversity assessment in a freshwater system including lentic and lotic environments. We tested the ability of this approach to characterize large-scale organization of fish communities along a longitudinal gradient, from a lake to the outflowing river. First, our results confirm that eDNA metabarcoding is more efficient than a single traditional sampling campaign to detect species presence, especially in rivers. Second, the species list obtained using this approach is comparable to the one obtained when cumulating all traditional sampling sessions since 1995 and 1988 for the lake and the river, respectively. In conclusion, eDNA metabarcoding gives a faithful description of local fish biodiversity in the study system, more specifically within a range of a few kilometers along the river in our study conditions, i.e. longer than a traditional fish sampling site.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos , Peixes/genética , Animais , Ecossistema , Biologia de Ecossistemas de Água Doce , Lagos , Reprodutibilidade dos Testes , Rios
3.
Biodegradation ; 27(1): 15-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26614490

RESUMO

Performance stability is a key issue when managing anaerobic digesters. However it can be affected by external disturbances caused by micropollutants. In this study the influence of phenol on the methanization of cellulose was evaluated through batch toxicity assays. Special attention was given to the dynamics of microbial communities by means of automated ribosomal intergenic spacer analysis. We observed that, as phenol concentrations increased, the different steps of anaerobic cellulose digestion were unevenly and progressively affected, methanogenesis being the most sensitive: specific methanogenic activity was half-inhibited at 1.40 g/L of phenol, whereas hydrolysis of cellulose and its fermentation to VFA were observed at up to 2.00 g/L. Depending on the level of phenol, microbial communities resisted either through physiological or structural adaptation. Thus, performances at 0.50 g/L were maintained in spite of the microbial community's shift. However, the communities' ability to adapt was limited and performances decreased drastically beyond 2.00 g/L of phenol.


Assuntos
Celulose/metabolismo , Poluentes Ambientais/metabolismo , Fenóis/farmacologia , Anaerobiose , Archaea/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Celulose/química , DNA Bacteriano/genética , Poluentes Ambientais/química , Ácidos Graxos Voláteis/química , Ácidos Graxos Voláteis/metabolismo , Fermentação , Metano/análise , Metano/metabolismo , Ribossomos/genética , Esgotos , Microbiologia da Água
4.
Mol Ecol ; 25(4): 929-42, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26479867

RESUMO

Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90-0.99) vs. 0.58 (CI = 0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.


Assuntos
Anfíbios/classificação , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Peixes/classificação , Anfíbios/genética , Animais , Primers do DNA , DNA Mitocondrial/genética , Ecossistema , Monitoramento Ambiental , Peixes/genética , Água Doce , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA