Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(27): eabn7258, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857460

RESUMO

In the evolution of land plants, the plant immune system has experienced expansion in immune receptor and signaling pathways. Lineage-specific expansions have been observed in diverse gene families that are potentially involved in immunity but lack causal association. Here, we show that Rps8-mediated resistance in barley to the pathogen Puccinia striiformis f. sp. tritici (wheat stripe rust) is conferred by a genetic module: Pur1 and Exo70FX12, which are together necessary and sufficient. Pur1 encodes a leucine-rich repeat receptor kinase and is the ortholog of rice Xa21, and Exo70FX12 belongs to the Poales-specific Exo70FX clade. The Exo70FX clade emerged after the divergence of the Bromeliaceae and Poaceae and comprises from 2 to 75 members in sequenced grasses. These results demonstrate the requirement of a lineage-specific Exo70FX12 in Pur1-mediated immunity and suggest that the Exo70FX clade may have evolved a specialized role in receptor kinase signaling.

2.
Plant Genome ; 15(2): e20187, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302294

RESUMO

Disease lesion mimic (DLM) or necrotic mutants display necrotic lesions in the absence of pathogen infections. They can show improved resistance to some pathogens and their molecular dissection can contribute to revealing components of plant defense pathways. Although forward-genetics strategies to find genes causal to mutant phenotypes are available in crops, these strategies require the production of experimental cross populations, mutagenesis, or gene editing and are time- and resource-consuming or may have to deal with regulated plant materials. In this study, we described a collection of 34 DLM mutants in barley (Hordeum vulgare L.) and applied a novel method called complementation by sequencing (CBS), which enables the identification of the gene responsible for a mutant phenotype given the availability of two or more chemically mutagenized individuals showing the same phenotype. Complementation by sequencing relies on the feasibility to obtain all induced mutations present in chemical mutants and on the low probability that different individuals share the same mutated genes. By CBS, we identified a cytochrome P450 CYP71P1 gene as responsible for orange blotch DLM mutants, including the historical barley nec3 locus. By comparative phylogenetic analysis we showed that CYP71P1 gene family emerged early in angiosperm evolution but has been recurrently lost in some lineages including Arabidopsis thaliana (L.) Heynh. Complementation by sequencing is a straightforward cost-effective approach to clone genes controlling phenotypes in a chemically mutagenized collection. The TILLMore (TM) collection will be instrumental for understanding the molecular basis of DLM phenotypes and to contribute knowledge about mechanisms of host-pathogen interaction.


Assuntos
Arabidopsis , Hordeum , Arabidopsis/genética , Clonagem Molecular , Genes de Plantas , Hordeum/genética , Mutação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA