Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 303(1): 9-17, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20015338

RESUMO

An enzyme with mannosyl glycoprotein endo-N-acetyl-beta-D-glucosaminidase (ENGase)-type activity was partially purified from the extracellular medium of the mould Hypocrea jecorina (Trichoderma reesei). Internal peptides were generated and used to identify the gene in the T. reesei genome. The active enzyme is processed both at the N- and at the C-terminus. High-mannose-type glycoproteins are good substrates, whereas complex-type glycans are not hydrolysed. The enzyme represents the first fungal member of glycoside hydrolase family 18 with ENGase-type activity. Bacterial ENGases and the fungal chitinases belonging to the same family show very low homology with Endo T. Database searches identify several highly homologous genes in fungi and the activity is also found within other Trichoderma species. This ENGase activity, not coregulated with cellulase production, could be responsible for the extensive N-deglycosylation observed for several T. reesei cellulases.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocrea/enzimologia , Hypocrea/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Análise por Conglomerados , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
2.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 3): 227-36, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18323617

RESUMO

Class I alpha-mannosidases (glycoside hydrolase family GH47) play key roles in the maturation of N-glycans and the ER-associated degradation of unfolded glycoproteins. The 1.95 A resolution structure of a fungal alpha-1,2-mannosidase in complex with the substrate analogue methyl-alpha-D-lyxopyranosyl-(1',2)-alpha-D-mannopyranoside (LM) shows the intact disaccharide spanning the -1/+1 subsites, with the D-lyxoside ring in the -1 subsite in the 1C4 chair conformation, and provides insight into the mechanism of catalysis. The absence of the C5' hydroxymethyl group on the D-lyxoside moiety results in the side chain of Arg407 adopting two alternative conformations: the minor one interacting with Asp375 and the major one interacting with both the D-lyxoside and the catalytic base Glu409, thus disrupting its function. Chemical modification of Asp375 has previously been shown to inactivate the enzyme. Taken together, the data suggest that Arg407, which belongs to the conserved sequence motif RPExxE, may act to modulate the activity of the enzyme. The proposed mechanism for modulating the activity is potentially a general mechanism for this superfamily.


Assuntos
Arginina/química , Fungos/enzimologia , alfa-Manosidase/química , alfa-Manosidase/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Biomacromolecules ; 9(2): 672-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18208315

RESUMO

For tissue engineering applications, it is necessary to balance the need for specific biological interactions with the need to prevent unfavorable nonspecific interactions. For this purpose, novel poly[(organo)phosphazenes] were synthesized having galactose and/or poly(ethylene glycol) (PEG) side chains. The synthesis was described previously. Here, we investigate the human serum albumin (HSA) adhesion to these polymers using surface plasmon resonance (SPR). We could conclude that the incorporation of PEG reduced the protein adsorption. The influence of the galactose moieties was investigated using SPR and a sugar-lectin binding assay. The interaction between a lectin (Peanut agglutinin, PNA or Ricinus communis-agglutinin, RCA) and the polyphosphazene derivatives was evaluated. Type IIA polymers, having aminohexyl-galactose, phenylalanine ethyl ester, and glycine ethyl ester side chains, were capable of binding with the lectin. As the amount of galactose was increased, the extent of the galactose specific lectin binding was also increased (higher RU or absorbance). PEG containing polymers failed to bind specifically with the lectin. The presence of PEG, either as a spacer or as additional chains, interfered with the establishment of contact between the galactose and the binding site on the lectin. The adsorption of PNA or RCA to these types of polymers was attributed to nonspecific interactions. SPR was also used to determine rate and equilibrium constants. In addition the effect of the addition of water soluble polyphosphazenes on the enzymatic cleavage of o-nitrophenyl-beta-D-galactopyranoside was investigated. The galactose moieties were not available as inhibitors because of the presence of PEG.


Assuntos
Galactose/química , Galactose/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Polímeros/química , Polímeros/metabolismo , Adsorção , Humanos , Ligação Proteica/fisiologia
4.
Carbohydr Res ; 343(3): 541-8, 2008 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-18062947

RESUMO

Fluorogenic substrates of endo-beta-(1-->4)-xylanases (EXs), 4-methylumbelliferyl beta-glycosides of xylobiose and xylotriose were synthesized from fully acetylated oligosaccharides using the alpha-trichloroacetimidate procedure. A commercially available syrup containing xylose and xylo-oligosaccharides was used as the starting material. Both fluorogenic glycosides were found to be suitable substrates for EXs, particularly for sensitive detection of the enzymes in electrophoretic gels and their in situ localization on sections of fruiting bodies of some plants, such as tomato, potato and eggplant, all of the family Solanaceae.


Assuntos
Endo-1,4-beta-Xilanases/análise , Corantes Fluorescentes/síntese química , Dissacarídeos/síntese química , Eletroforese , Endo-1,4-beta-Xilanases/química , Plantas/enzimologia , Trissacarídeos/síntese química , Xilose
5.
Biochim Biophys Acta ; 1770(1): 55-62, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17008008

RESUMO

High levels of an extracellular alpha-galactosidase are produced by the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b when grown in submerse culture and induced by sucrose. The enzyme was purified 114-fold from the culture supernatant by (NH(4))(2)SO(4) fractionation, and by chromatographical steps including Sepharose CL-6B gel filtration, DEAE-Sepharose FF anion-exchange, Q-Sepharose FF anion-exchange and Superose 12 gel filtration. The purified enzyme exhibits apparent homogeneity as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and iso-electric focusing (IEF). The native molecular weight of the monomeric alpha-galactosidase is 93 kDa with an isoelectric point of 3.9. The enzyme displays a pH and temperature optimum of 5-5.5 and 65 degrees C, respectively. The purified enzyme retains more than 90% of its activity at 45 degrees C in a pH range from 5.5 to 9.0. The enzyme proves to be a glycoprotein and its carbohydrate content is 5.3%. Kinetic parameters were determined for the substrates p-nitrophenyl-alpha-galactopyranoside, raffinose and stachyose and very similar K(m) values of 1.13 mM, 1.61 mM and 1.17 mM were found. Mn(++) ions activates enzyme activity, whereas inhibitory effects can be observed with Ca(++), Zn(++) and Hg(++). Five min incubation at 65 degrees with 10 mM Ag(+) results in complete inactivation of the purified alpha-galactosidase. Amino acid sequence alignment of N-terminal sequence data allows the alpha-galactosidase from Thermomyces lanuginosus to be classified in glycosyl hydrolase family 36.


Assuntos
Ascomicetos/enzimologia , alfa-Galactosidase/metabolismo , Sequência de Aminoácidos , Catálise , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Temperatura , alfa-Galactosidase/isolamento & purificação
6.
Mycol Res ; 110(Pt 10): 1129-39, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17008082

RESUMO

At least three acetyl xylan esterases (AXE I, II and III) are secreted by Penicillium purpurogenum. This publication describes more detailed work on AXE I and its gene. AXE I binds cellulose but not xylan; it is glycosylated and inactivated by phenylmethylsulphonyl fluoride, showing that it is a serine esterase. The axe1 gene presents an open reading frame of 1278 bp, including two introns of 68 and 61 bp; it codes for a signal peptide of 31 residues and a mature protein of 351 amino acids (molecular weight 36,693). AXE I has a modular structure: a catalytic module at the amino terminus belonging to family 1 of the carbohydrate esterases, a linker rich in serines and threonines, and a family 1 carboxy terminal carbohydrate binding module (CBM). The CBM is similar to that of AXE from Trichoderma reesei, (with a family 5 catalytic module) indicating that the genes for catalytic modules and CBMs have evolved separately, and that they have been linked by gene fusion. The promoter sequence of axe1 contains several putative sequences for binding of gene expression regulators also found in other family 1 esterase gene promoters. It is proposed that AXE I and II act in succession in xylan degradation; first, xylan is attacked by AXE I and other xylanases possessing CBMs (which facilitate binding to lignocellulose), followed by other enzymes acting mainly on soluble substrates.


Assuntos
Acetilesterase/genética , Penicillium/enzimologia , Acetilesterase/química , Acetilesterase/isolamento & purificação , Acetilesterase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Primers do DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Cinética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
J Chromatogr A ; 1058(1-2): 263-72, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15595676

RESUMO

N-Glycosylation of cellobiohydrolase I from the fungus Trichoderma reesei (strain Rut-C30) is studied using a combination of electrophoretic, chromatographic and mass spectrometric techniques. As four potential N-glycosylation sites and several uncharged and phosphorylated high-mannose glycans are present, a large number of glycoforms and phospho-isoforms can be expected. Isoelectric focusing both in gel and in capillary format was successfully applied for the separation of the phospho-isoforms. They were extracted in their intact form from the gel and subsequently analysed by nanospray-Q-TOF-MS, thereby making use of a powerful two-dimensional technique. Nano-LC/MS/MS on a Q-Trap MS further allowed the determination of the glycosylation sites. As a novel approach, an oxonium ion was used in precursor ion scanning for selective detection of glycopeptides containing phosphorylated high-mannose glycans.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Cromatografia Líquida/métodos , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Trichoderma/enzimologia , Sequência de Aminoácidos , Sequência de Carboidratos , Celulose 1,4-beta-Celobiosidase/metabolismo , Focalização Isoelétrica , Dados de Sequência Molecular , Nanotecnologia
8.
Anal Chem ; 76(19): 5878-86, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15456310

RESUMO

A capillary electrophoresis-mass spectrometric (CE-MS) method is described for the simultaneous analysis of uncharged and charged glycans. The glycans were labeled with the negatively charged tag 8-aminopyrene-1,3,6-trisulfonate by reductive amination and separated in an ammonium acetate buffer. A Q-Trap instrument was used for mass spectrometric detection. The CE-MS method was first optimized using maltooligosaccharides and ribonuclease B N-glycans and then applied to the characterization of enzymatically released N-glycans from the glycoprotein cellobiohydrolase I. The method, as developed, allowed differentiation of phosphorylated isomers and MS/MS provided useful structural information. Further structural evidence was obtained by studying the methylated glycans in off-line ESI-MS/MS experiments and by using a combination of chemical and enzymatic sequencing.


Assuntos
Celulose 1,4-beta-Celobiosidase/análise , Celulose 1,4-beta-Celobiosidase/química , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Polissacarídeos/análise , Polissacarídeos/química , Configuração de Carboidratos , Celulose 1,4-beta-Celobiosidase/metabolismo , Íons/química , Isoenzimas/análise , Isoenzimas/química , Isoenzimas/metabolismo , Fosforilação , Polissacarídeos/metabolismo
9.
Glycobiology ; 14(8): 713-24, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15070858

RESUMO

The glycosylation of Cel7A (CBH I) from Trichoderma reesei varies considerably when the fungus is grown under different conditions. As shown by ESI-MS and PAG-IEF analyses of both intact protein and the isolated catalytic core module, the microheterogeneity originates mainly from the variable ratio of single N-acetylglucosamine over high-mannose structures on the three N-glycosylation sites and from the presence or absence of phosphate residues. Fully N- and O-glycosylated Cel7A can only be isolated from minimal medium and probably reflects the initial complexity of the protein on leaving the glycosynthetic pathway. Extracellular activities are responsible for postsecretorial modifications in other cultivation conditions: alpha-(1-->2)-mannosidase, alpha-(1-->3)-glucosidase and an Endo H type activity participate in N-deglycosylation (core), whereas a phosphatase and a mannosidase are probably responsible for hydrolysis of O-glycans (linker). The effects are most prominent in corn steep liquor-enriched media, where the pH is closer to the pH optimum (5-6) of these extracellular hydrolases. In minimal medium, the low pH and the presence of proteases could explain for the absence of such activities. On the other hand, phosphodiester linkages in the catalytic module are only observed under specific conditions. The extracellular trigger is still unknown, but mannophosphorylation may be regulated intracellularly by alpha-(1-->2)-mannosidases and phosphomannosyl transferases competing for the same intermediate in the glycosynthetic pathway.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Trichoderma/enzimologia , Domínio Catalítico , Meios de Cultura , Líquido Extracelular/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Trichoderma/crescimento & desenvolvimento
10.
Glycobiology ; 14(8): 725-37, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15070859

RESUMO

A systematic analysis of the N-glycosylation of the catalytic domain of cellobiohydrolase I (Cel7A or CBH I) isolated from several Trichoderma reesei strains grown in minimal media was performed. Using a combination of chromatographic, electrophoretic, and mass spectrometric methods, the presence of glucosylated and phosphorylated oligosaccharides on the three N-glycosylation sites of Cel7A core protein (from T. reesei strains Rut-C30 and RL-P37) confirms previous findings. With N-glycans isolated from other strains, no end-capping glucose could be detected. Phosphodiester linkages were however found in proteins from each strain and these probably occur on both the alpha1-3 and the alpha1-6 branch of the high-mannose oligosaccharide tree. Evidence is also presented for the occurrence of mannobiosyl units on the phosphodiester linkage. Therefore the predominant N-glycans on Cel7A can be represented as (ManP)(0-1)GlcMan(7-8)GlcNAc2 for the hyperproducing Rut-C30 and RL-P37 mutants and as (Man(1-2)P)(0-1-2)Man(5-6-7)GlcNAc2 for the wild-type strain and the other mutants. As shown by ESI-MS, random substitution of these structures on the N-glycosylation sites explains the heterogeneous glycoform population of the isolated core domains. PAG-IEF separates up to five isoforms, resulting from posttranslational modification of Cel7A with mannosyl phosphodiester residues at the three distinct sites. This study clearly shows that posttranslational phosphorylation of glycoproteins is not atypical for Trichoderma sp. and that, in the case of the Rut-C30 and RL-P37 strains, the presence of an end-capped glucose residue at the alpha1-3 branch apparently hinders a second mannophoshoryl transfer.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Trichoderma/enzimologia , Sequência de Carboidratos , Domínio Catalítico , Celulose 1,4-beta-Celobiosidase/isolamento & purificação , Cromatografia Líquida , Eletroforese , Eletroforese em Gel de Poliacrilamida , Glicosilação , Focalização Isoelétrica , Dados de Sequência Molecular , Mutação , Fosforilação , Polissacarídeos/análise , Processamento de Proteína Pós-Traducional , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Trichoderma/genética
11.
Carbohydr Res ; 339(6): 1047-60, 2004 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15063191

RESUMO

The structures of several enzymatic hydrolysis products of Nothogenia erinacea seaweed xylan, a linear homopolymer with mixed beta-(1-->3)/beta-(1-->4) linkages, were analysed by physicochemical and biochemical techniques. With the glycoside hydrolase family 10 beta-(1-->4)-xylanase from Cryptococcus adeliae, hydrolysis proceeds to a final mixture of products containing a mixed linkage-type triose as a major compound, whereas with the family 11 xylanase from Thermomyces lanuginosus this is a mixed linkage tetraose. The Cryptococcus xylanase is shown to be capable of also catalysing the hydrolysis of beta-(1-->3) linkages, that is this of a mixed type tetraose intermediary formed, in accordance with the broader substrate specificity of family 10 enzymes. From a partial degradation experiment with the T. lanuginosus xylanase, a series of higher mixed oligosaccharides were isolated and identified. The observed oligosaccharide intermediates and splicing pattern indicate an irregular beta-(1-->3)/beta-(1-->4) linkage distribution within the linear d-xylose polymer. Similar results were obtained with rhodymenan, the seaweed xylan from Palmares palmata.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Rodófitas/metabolismo , Xilanos/química , Ascomicetos/enzimologia , Sequência de Carboidratos , Cryptococcus/enzimologia , Hidrólise , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oligossacarídeos/química , Polissacarídeos/química , Prótons , Alga Marinha/química , Especificidade por Substrato , Fatores de Tempo , Ácido Trifluoracético/química
12.
Eur J Biochem ; 271(7): 1266-76, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15030476

RESUMO

The catalytic module of Hypocrea jecorina (previously Trichoderma reesei) Cel7B was homologously expressed by transformation of strain QM9414. Post-translational modifications in purified Cel7B preparations were analysed by enzymatic digestions, high performance chromatography, mass spectrometry and site-directed mutagenesis. Of the five potential sites found in the wild-type enzyme, only Asn56 and Asn182 were found to be N-glycosylated. GlcNAc(2)Man(5) was identified as the predominant N-glycan, although lesser amounts of GlcNAc(2)Man(7) and glycans carrying a mannophosphodiester bond were also detected. Repartition of neutral and charged glycan structures over the two glycosylation sites mainly accounts for the observed microheterogeneity of the protein. However, partial deamidation of Asn259 and a partially occupied O-glycosylation site give rise to further complexity in enzyme preparations.


Assuntos
Celulase/química , Hypocrea/metabolismo , Trichoderma/metabolismo , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Asparagina/química , Sítios de Ligação , Domínio Catalítico , Celulases/química , Cromatografia Líquida de Alta Pressão , Endopeptidases/química , Glicoproteínas/química , Glicosídeo Hidrolases/química , Glicosilação , Hidrólise , Focalização Isoelétrica , Espectrometria de Massas , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Ligação Proteica , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray , alfa-Manosidase/química
13.
J Mol Biol ; 333(4): 817-29, 2003 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-14568538

RESUMO

The exo-loop of Trichoderma reesei cellobiohydrolase Cel7A forms the roof of the active site tunnel at the catalytic centre. Mutants were designed to study the role of this loop in crystalline cellulose degradation. A hydrogen bond to substrate made by a tyrosine at the tip of the loop was removed by the Y247F mutation. The mobility of the loop was reduced by introducing a new disulphide bridge in the mutant D241C/D249C. The tip of the loop was deleted in mutant Delta(G245-Y252). No major structural disturbances were observed in the mutant enzymes, nor was the thermostability of the enzyme affected by the mutations. The Y247F mutation caused a slight k(cat) reduction on 4-nitrophenyl lactoside, but only a small effect on cellulose hydrolysis. Deletion of the tip of the loop increased both k(cat) and K(M) and gave reduced product inhibition. Increased activity was observed on amorphous cellulose, while only half the original activity remained on crystalline cellulose. Stabilisation of the exo-loop by the disulphide bridge enhanced the activity on both amorphous and crystalline cellulose. The ratio Glc(2)/(Glc(3)+Glc(1)) released from cellulose, which is indicative of processive action, was highest with Tr Cel7A wild-type enzyme and smallest with the deletion mutant on both substrates. Based on these data it seems that the exo-loop of Tr Cel7A has evolved to facilitate processive crystalline cellulose degradation, which does not require significant conformational changes of this loop.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Phanerochaete/enzimologia , Engenharia de Proteínas , Estrutura Secundária de Proteína , Trichoderma/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Cristalografia por Raios X , Estabilidade Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Desnaturação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
14.
Carbohydr Res ; 338(18): 1881-90, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12932372

RESUMO

An endo-beta-1,4-xylanase (1,4-beta-D-xylan xylanoxydrolase, EC 3.2.1.8) present in culture filtrates of Sporotrichum thermophile ATCC 34628 was purified to homogeneity by Q-Sepharose and Sephacryl S-200 column chromatographies. The enzyme has a molecular mass of 25,000 Da, an isoelectric point of 6.7, and is optimally active at pH 5 and at 70 degrees C. Thin-layer chromatography (TLC) analysis showed that endo-xylanase liberates mainly xylose (Xyl) and xylobiose (Xyl2) from beechwood 4-O-methyl-D-glucuronoxylan, O-acetyl-4-O-methylglucuronoxylan and rhodymenan (a beta-(1-->4)-beta(1-->3)-xylan). Also, the enzyme releases an acidic xylo-oligosaccharide from 4-O-methyl-D-glucuronoxylan, and an isomeric xylotetraose and an isomeric xylopentaose from rhodymenan. Analysis of reaction mixtures by high performance liquid chromatography (HPLC) revealed that the enzyme cleaves preferentially the internal glycosidic bonds of xylooligosaccharides, [1-3H]-xylooligosaccharides and xylan. The enzyme also hydrolyses the 4-methylumbelliferyl glycosides of beta-xylobiose and beta-xylotriose at the second glycosidic bond adjacent to the aglycon. The endoxylanase is not active on pNPX and pNPC. The enzyme mediates a decrease in the viscosity of xylan associated with a release of only small amounts of reducing sugar. The enzyme is irreversibly inhibited by series of omega-epoxyalkyl glycosides of D-xylopyranose. The results suggest that the endoxylanase from S. thermophile has catalytic properties similar to the enzymes belonging to family 11.


Assuntos
Endo-1,4-beta-Xilanases/química , Himecromona/análogos & derivados , Sporothrix/enzimologia , Catálise , Domínio Catalítico/fisiologia , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Cromatografia em Camada Fina , Meios de Cultivo Condicionados/química , Eletroforese em Gel de Poliacrilamida , Endo-1,4-beta-Xilanases/antagonistas & inibidores , Endo-1,4-beta-Xilanases/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Concentração de Íons de Hidrogênio , Himecromona/metabolismo , Ponto Isoelétrico , Cinética , Espectroscopia de Ressonância Magnética , Peso Molecular , Oligossacarídeos/análise , Oligossacarídeos/metabolismo , Sporothrix/química , Especificidade por Substrato , Temperatura , Viscosidade , Xilanos/metabolismo
15.
J Biotechnol ; 101(1): 37-48, 2003 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-12523968

RESUMO

Endo-beta-1,4-D-mannanases (beta-mannanase; EC 3.2.1.78) are endohydrolases that participate in the degradation of hemicellulose, which is closely associated with cellulose in plant cell walls. The beta-mannanase from Trichoderma reesei (Man5A) is composed of an N-terminal catalytic module and a C-terminal carbohydrate-binding module (CBM). In order to study the properties of the CBM, a construct encoding a mutant of Man5A lacking the part encoding the CBM (Man5ADeltaCBM), was expressed in T. reesei under the regulation of the Aspergillus nidulans gpdA promoter. The wild-type enzyme was expressed in the same way and both proteins were purified to electrophoretic homogeneity using ion-exchange chromatography. Both enzymes hydrolysed mannopentaose, soluble locust bean gum galactomannan and insoluble ivory nut mannan with similar rates. With a mannan/cellulose complex, however, the deletion mutant lacking the CBM showed a significant decrease in hydrolysis. Binding experiments using activity detection of Man5A and Man5ADeltaCBM suggests that the CBM binds to cellulose but not to mannan. Moreover, the binding of Man5A to cellulose was compared with that of an endoglucanase (Cel7B) from T. reesei.


Assuntos
Proteínas de Transporte/química , Celulose/química , Mananas/química , Manosidases/química , Trichoderma/enzimologia , Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Células Cultivadas , Clonagem Molecular , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Hidrólise , Manosidases/genética , Manosidases/isolamento & purificação , Manosidases/metabolismo , Mutagênese Sítio-Dirigida , Polissacarídeos/química , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Trichoderma/classificação , Trichoderma/genética , beta-Manosidase
16.
J Am Chem Soc ; 124(34): 10015-24, 2002 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12188666

RESUMO

Trichoderma reesei cellobiohydrolase Cel6A is an inverting glycosidase. Structural studies have established that the tunnel-shaped active site of Cel6A contains two aspartic acids, D221 and D175, that are close to the glycosidic oxygen of the scissile bond and at hydrogen-bonding distance from each other. Here, site-directed mutagenesis, X-ray crystallography, and enzyme kinetic studies have been used to confirm the role of residue D221 as the catalytic acid. D175 is shown to affect protonation of D221 and to contribute to the electrostatic stabilization of the partial positive charge in the transition state. Structural and modeling studies suggest that the single-displacement mechanism of Cel6A may not directly involve a catalytic base. The value of (D2O)(V) of 1.16 +/- 0.14 for hydrolysis of cellotriose suggests that the large direct effect expected for proton transfer from the nucleophilic water through a water chain (Grotthus mechanism) is offset by an inverse effect arising from reversibly breaking the short, tight hydrogen bond between D221 and D175 before catalysis.


Assuntos
Ácido Aspártico/química , Ácido Aspártico/metabolismo , Celulase/química , Celulase/metabolismo , Trichoderma/enzimologia , Sítios de Ligação , Sequência de Carboidratos , Catálise , Celulase/genética , Celulose 1,4-beta-Celobiosidase , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica
17.
J Biol Chem ; 277(38): 35133-9, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12089151

RESUMO

Xylanases are generally classified into glycosyl hydrolase families 10 and 11 and are found to frequently have an inverse relationship between their pI and molecular mass values. However, we have isolated a psychrophilic xylanase that belongs to family 8 and which has both a high pI and high molecular mass. This novel xylanase, isolated from the Antarctic bacterium Pseudoalteromonas haloplanktis, is not homologous to family 10 or 11 enzymes but has 20-30% identity with family 8 members. NMR analysis shows that this enzyme hydrolyzes with inversion of anomeric configuration, in contrast to other known xylanases which are retaining. No cellulase, chitosanase or lichenase activity was detected. It appears to be functionally similar to family 11 xylanases. It hydrolyzes xylan to principally xylotriose and xylotetraose and is most active on long chain xylo-oligosaccharides. Kinetic studies indicate that it has a large substrate binding cleft, containing at least six xylose-binding subsites. Typical psychrophilic characteristics of a high catalytic activity at low temperatures and low thermal stability are observed. An evolutionary tree of family 8 enzymes revealed the presence of six distinct clusters. Indeed classification in family 8 would suggest an (alpha/alpha)(6) fold, distinct from that of other currently known xylanases.


Assuntos
Xilosidases/metabolismo , Sequência de Bases , Catálise , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Primers do DNA , Evolução Molecular , Dados de Sequência Molecular , Proteobactérias/enzimologia , Proteobactérias/crescimento & desenvolvimento , Especificidade por Substrato , Xilano Endo-1,3-beta-Xilosidase , Xilosidases/química , Xilosidases/genética , Xilosidases/isolamento & purificação
18.
Biochim Biophys Acta ; 1596(2): 366-80, 2002 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12007616

RESUMO

Three forms of cellobiohydrolase (EC 3.2.1.91), CBH IA, CBH IB and CBH II, were isolated to apparent homogeneity from culture filtrates of the aerobic fungus Talaromyces emersonii. The three enzymes are single sub-unit glycoproteins, and unlike most other fungal cellobiohydrolases are characterised by noteworthy thermostability. The kinetic properties and mode of action of each enzyme against polymeric and small soluble oligomeric substrates were investigated in detail. CBH IA, CBH IB and CBH II catalyse the hydrolysis of microcrystalline cellulose, albeit to varying extents. Hydrolysis of a soluble cellulose derivative (CMC) and barley 1,3;1,4-beta-D-glucan was not observed. Cellobiose (G2) is the main reaction product released by CBH IA, CBH IB, and CBH II from microcrystalline cellulose. All three CBHs are competitively inhibited by G2; inhibition constant values (K(i)) of 2.5 and 0.18 mM were obtained for CBH IA and CBH IB, respectively (4-nitrophenyl-beta-cellobioside as substrate), while a K(i) of 0.16 mM was determined for CBH II (2-chloro-4-nitrophenyl-beta-cellotrioside as substrate). Bond cleavage patterns were determined for each CBH on 4-methylumbelliferyl derivatives of beta-cellobioside and beta-cellotrioside (MeUmbG(n)). While the Tal. emersonii CBHs share certain properties with their counterparts from Trichoderma reesei, Humicola insolens and other fungal sources, distinct differences were noted.


Assuntos
Celulase/química , Fungos/enzimologia , Ligação Competitiva , Catálise , Celobiose/farmacologia , Celulase/antagonistas & inibidores , Celulase/isolamento & purificação , Celulose 1,4-beta-Celobiosidase , Estabilidade Enzimática , Glicosídeos/química , Cinética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA