Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 674: 108082, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31473191

RESUMO

Plant lipoxygenases oxygenate linoleic acid to produce 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-HPOD) or 9-hydroperoxy-10E,12Z-octadecadienoic acid (9(S)-HPOD). The manner in which these enzymes bind substrates and the mechanisms by which they control regiospecificity are uncertain. Hornung et al. (Proc. Natl. Acad. Sci. USA96 (1999) 4192-4197) have identified an important residue, corresponding to phe-557 in soybean lipoxygenase-1 (SBLO-1). These authors proposed that large residues in this position favored binding of linoleate with the carboxylate group near the surface of the enzyme (tail-first binding), resulting in formation of 13(S)-HPOD. They also proposed that smaller residues in this position facilitate binding of linoleate in a head-first manner with its carboxylate group interacting with a conserved arginine residue (arg-707 in SBLO-1), which leads to 9(S)-HPOD. In the present work, we have tested these proposals on SBLO-1. The F557V mutant produced 33% 9-HPOD (S:R = 87:13) from linoleic acid at pH 7.5, compared with 8% for the wild-type enzyme and 12% with the F557V,R707L double mutant. Experiments with 11(S)-deuteriolinoleic acid indicated that the 9(S)-HPOD produced by the F557V mutant involves removal of hydrogen from the pro-R position on C-11 of linoleic acid, as expected if 9(S)-HPOD results from binding in an orientation that is inverted relative to that leading to 13(S)-HPOD. The product distributions obtained by oxygenation of 10Z,13Z-nonadecadienoic acid and arachidonic acid by the F557V mutant support the hypothesis that ω6 oxygenation results from tail-first binding and ω10 oxygenation from head-first binding. The results demonstrate that the regiospecificity of SBLO-1 can be altered by a mutation that facilitates an alternative mode of substrate binding and adds to the body of evidence that 13(S)-HPOD arises from tail-first binding.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Glycine max/enzimologia , Lipoxigenase/metabolismo , Sítios de Ligação , Catálise , Deutério/química , Ácidos Graxos Insaturados/química , Ácidos Linoleicos/química , Peróxidos Lipídicos/química , Lipoxigenase/genética , Mutação , Oxirredução , Fosfatidilcolinas/química , Ligação Proteica , Estereoisomerismo
2.
Bioorg Chem ; 78: 170-177, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29573638

RESUMO

Lipoxygenases catalyze the oxygenation of polyunsaturated fatty acids and their derivatives to produce conjugated diene hydroperoxides. Soybean lipoxygenase-1 (SBLO-1) has been the subject of intensive structural and mechanistic study, but the manner in which this enzyme binds substrates is uncertain. Previous studies suggest that the fatty acyl group of the substrate binds in an internal cavity near the catalytic iron with the polar end at the surface of the protein or perhaps external to the protein. To test this model, we have investigated two pairs of enantiomeric N-linoleoylamino acids as substrates for SBLO-1. If the amino acid moiety binds external to the protein, the kinetics and product distribution should show little or no sensitivity to the stereochemical configuration of the amino acid moiety. Consistent with this expectation, N-linoleoyl-l-valine (LLV) and N-linoleoyl-d-valine (LDV) are both good substrates with kcat/Km values that are equal within error and about 40% higher than kcat/Km for linoleic acid. Experiments with N-linoleoyl-l-tryptophan (LLT) and N-linoleoyl-d-tryptophan (LDT) were complicated by the low critical micelle concentrations (CMC = 6-8 µM) of these substances. Below the CMC, LDT is a better substrate by a factor of 2.7. The rates of oxygenation of LDT and LLT continue to rise above the CMC, with modest stereoselectivity in favor of the d enantiomer. With all of the substrates tested, the major product is the 13(S)-hydroperoxide, and the distribution of minor products is not appreciably affected by the configuration of the amino acid moiety. The absence of stereoselectivity with LLV and LDV, the modest magnitude of the stereoselectivity with LLT and LDT, and the ability micellar forms of LLT and LDT to increase the concentration of available substrate are all consistent with the hypothesis that the amino acid moiety binds largely external to SBLO-1 and interacts with it only weakly.


Assuntos
Glycine max/enzimologia , Ácidos Linoleicos/metabolismo , Lipoxigenase/metabolismo , Sondas Moleculares/metabolismo , Valina/metabolismo , Sítios de Ligação , Hidrólise , Cinética , Lipoxigenase/química , Sondas Moleculares/química , Estrutura Molecular , Estereoisomerismo , Especificidade por Substrato , Tensão Superficial
3.
Bioorg Chem ; 39(2): 94-100, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21257189

RESUMO

Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of 1,4-dienes to produce conjugated diene hydroperoxides. The best substrates are anions of fatty acids; for example, linoleate is converted to 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate. The manner in which SBLO-1 binds substrates is uncertain. In the present work, it was found that SBLO-1 will oxygenate linoleyltrimethylammonium ion (LTMA) to give primarily13(S)-hydroperoxy-9(Z),11(E)-octadecadienyltrimethylammonium ion. The rate of this process is about the same at pH 7 and pH 9 and is about 30% of the rate observed with linoleate at pH 9. At pH 7, SBLO-1 oxygenates linoleyldimethylamine (LDMA) to give primarily 13(S)-hydroperoxy-9(Z),11(E)-octadecadienyldimethylamine. The oxygenation of LDMA occurs at about the same rate as LTMA at pH 7, but more slowly at pH 9. The results demonstrate that SBLO-1 will readily oxygenate substrates in which the carboxylate of linoleate is replaced with a cationic group, and the products of these reactions have the same stereo- and regiochemistry as the products obtained from fatty acid substrates.


Assuntos
Glycine max/enzimologia , Lipoxigenase/química , Cátions/química , Concentração de Íons de Hidrogênio , Ácido Linoleico/química , Lipoxigenase/metabolismo , Estereoisomerismo , Especificidade por Substrato
4.
Biochemistry ; 45(51): 15884-92, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17176111

RESUMO

Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of polyunsaturated fatty acids to produce conjugated diene hydroperoxides. Previous work from our laboratories has demonstrated that SBLO-1 will also catalyze the oxygenation of monounsaturated acids (Clapp, C. H., Senchak, S. E., Stover, T. J., Potter, T. C., Findeis, P. M., and Novak, M. J. (2001) Soybean Lipoxygenase-Mediated Oxygenation of Monounsaturated Fatty Acids to Enones, J. Am. Chem. Soc. 123, 747-748). Interestingly, the products are alpha,beta-unsaturated ketones rather than the expected allylic hydroperoxides. In the present work, we provide evidence that the monoolefin substrates are initially converted to allylic hydroperoxides, which are subsequently converted to the enone products. The hydroperoxide intermediates can be trapped by reduction to the corresponding allylic alcohols with glutathione peroxidase plus glutathione or with SnCl2. Under some conditions, the hydroperoxide intermediates accumulate and can be detected by HPLC and peroxide assays. Kinetics measurements at low concentrations of [1-14C]-9(Z)-octadecenoic acid indicate that oxygenation of this substrate at 25 degrees C, pH 9.0 occurs with kcat/Km = 1.6 (+/-0.1) x 10(2) M-1 s-1, which is about 105 lower than kcat/Km for oxygenation of 9(Z),12(Z)-octadecadienoic acid (linoleic acid). Comparison of the activities of 9(Z)-octadecenoic acid and 12(Z)-octadecenoic acid implies that the two double bonds of linoleic acid contribute almost equally to the C-H bond-breaking step in the normal lipoxygenase reaction. The results are consistent with the notion that SBLO-1 functionalizes substrates by a radical mechanism.


Assuntos
Ácidos Graxos Monoinsaturados/metabolismo , Glycine max/enzimologia , Peróxido de Hidrogênio/metabolismo , Lipoxigenase/metabolismo , Oxigênio/metabolismo , Alcenos/metabolismo , Androstadienos/metabolismo , Catálise , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Cinética , Ácido Oleico/metabolismo , Oxirredução , Especificidade por Substrato
5.
Biochemistry ; 41(38): 11504-11, 2002 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-12234194

RESUMO

Soybean lipoxygenase-1 is inactivated by micromolar concentrations of the following hydrophobic thiols: 1-octanethiol, 12(S)-mercapto-9(Z)-octadecenoic acid (S-12-HSODE), 12(R)-mercapto-9(Z)-octadecenoic acid (R-12-HSODE), and 12-mercaptooctadecanoic acid (12-HSODA). In each case, inactivation is time-dependent and not reversed by dilution or dialysis. Inactivation requires 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13-HPOD), which suggests that it is specific for the ferric form of the enzyme. Lipoxygenase catalyzes an oxygenation reaction on each of the aforementioned thiols, as judged by the consumption of O(2). These reactions also require 13-HPOD. 1-Octanethiol is converted to 1-octanesulfonic acid, which was identified by GC/MS of its methyl ester. The rates of oxygen uptake for R- and S-12-HODE are about 5- and 2.5-fold higher than the rate with 1-octanethiol. The stoichiometries of inactivation imply that inactivation occurs on approximately 1 in 18 turnovers for 12-HSODA, 1 in 48 turnovers for 1-octanethiol, 1 in 63 turnovers for S-12-HSODE, and 1 in 240 turnovers for R-12-HSODE. These data imply that close resemblance to lipoxygenase substrates is not a crucial requirement for either oxidation or inactivation. Under the conditions of our experiments, inactivation was not observed with several more polar thiols: mercaptoethanol, dithiothreitol, L-cysteine, glutathione, N-acetylcysteamine, and captopril. The results imply that hydrophobic thiols irreversibly inactivate soybean lipoxygenase by a mechanism that involves oxidation at sulfur.


Assuntos
Inibidores de Lipoxigenase/farmacologia , Lipoxigenase/metabolismo , Compostos de Sulfidrila/farmacologia , Cinética , Ácidos Linoleicos/farmacologia , Peróxidos Lipídicos/farmacologia , Oxirredução , Glycine max/enzimologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA