Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Adv Sci (Weinh) ; : e2307747, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896791

RESUMO

PARP inhibitors (PARPi) hold substantial promise in treating glioblastoma (GBM). However, the adverse effects have restricted their broad application. Through unbiased transcriptomic and proteomic sequencing, it is discovered that the BET inhibitor (BETi) Birabresib profoundly alters the processes of DNA replication and cell cycle progression in GBM cells, beyond the previously reported impact of BET inhibition on homologous recombination repair. Through in vitro experiments using established GBM cell lines and patient-derived primary GBM cells, as well as in vivo orthotopic transplantation tumor experiments in zebrafish and nude mice, it is demonstrated that the concurrent administration of PARPi and BETi can synergistically inhibit GBM. Intriguingly, it is observed that DNA damage lingers after discontinuation of PARPi monotherapy, implying that sequential administration of PARPi followed by BETi can maintain antitumor efficacy while reducing toxicity. In GBM cells with elevated baseline replication stress, the sequential regimen exhibits comparable efficacy to concurrent treatment, protecting normal glial cells with lower baseline replication stress from DNA toxicity and subsequent death. This study provides compelling preclinical evidence supporting the development of innovative drug administration strategies focusing on PARPi for GBM therapy.

3.
Adv Sci (Weinh) ; 10(3): e2205529, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453577

RESUMO

Glioblastoma (GBM) is the most aggressive type of cancer. Its current first-line postsurgery regimens are radiotherapy and temozolomide (TMZ) chemotherapy, both of which are DNA damage-inducing therapies but show very limited efficacy and a high risk of resistance. There is an urgent need to develop novel agents to sensitize GBM to DNA-damaging treatments. Here it is found that the triterpene compound stellettin B (STELB) greatly enhances the sensitivity of GBM to ionizing radiation and TMZ in vitro and in vivo. Mechanistically, STELB inhibits the expression of homologous recombination repair (HR) factors BRCA1/2 and RAD51 by promoting the degradation of PI3Kα through the ubiquitin-proteasome pathway; and the induced HR deficiency then leads to augmented DNA damage and cell death. It is further demonstrated that STELB has the potential to rapidly penetrate the blood-brain barrier to exert anti-GBM effects in the brain, based on zebrafish and nude mouse orthotopic xenograft tumor models. The study provides strong evidence that STELB represents a promising drug candidate to improve GBM therapy in combination with DNA-damaging treatments.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Triterpenos , Animais , Camundongos , Humanos , Glioblastoma/metabolismo , Reparo de DNA por Recombinação , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Fosfatidilinositol 3-Quinases/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Peixe-Zebra/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Dano ao DNA
5.
J Exp Clin Cancer Res ; 40(1): 374, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844627

RESUMO

BACKGROUND: The critical role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted massive efforts to develop PI3K inhibitors (PI3Kis) for cancer therapy. However, recent results from clinical trials have shown only a modest therapeutic efficacy of single-agent PI3Kis in solid tumors. Targeting autophagy has controversial context-dependent effects in cancer treatment. As a FDA-approved lysosomotropic agent, hydroxychloroquine (HCQ) has been well tested as an autophagy inhibitor in preclinical models. Here, we elucidated the novel mechanism of HCQ alone or in combination with PI3Ki BKM120 in the treatment of cancer. METHODS: The antitumor effects of HCQ and BKM120 on three different types of tumor cells were assessed by in vitro PrestoBlue assay, colony formation assay and in vivo zebrafish and nude mouse xenograft models. The involved molecular mechanisms were investigated by MDC staining, LC3 puncta formation assay, immunofluorescent assay, flow cytometric analysis of apoptosis and ROS, qRT-PCR, Western blot, comet assay, homologous recombination (HR) assay and immunohistochemical staining. RESULTS: HCQ significantly sensitized cancer cells to BKM120 in vitro and in vivo. Interestingly, the sensitization mediated by HCQ could not be phenocopied by treatment with other autophagy inhibitors (Spautin-1, 3-MA and bafilomycin A1) or knockdown of the essential autophagy genes Atg5/Atg7, suggesting that the sensitizing effect might be mediated independent of autophagy status. Mechanistically, HCQ induced ROS production and activated the transcription factor NRF2. In contrast, BKM120 prevented the elimination of ROS by inactivation of NRF2, leading to accumulation of DNA damage. In addition, HCQ activated ATM to enhance HR repair, a high-fidelity repair for DNA double-strand breaks (DSBs) in cells, while BKM120 inhibited HR repair by blocking the phosphorylation of ATM and the expression of BRCA1/2 and Rad51. CONCLUSIONS: Our study revealed that HCQ and BKM120 synergistically increased DSBs in tumor cells and therefore augmented apoptosis, resulting in enhanced antitumor efficacy. Our findings provide a new insight into how HCQ exhibits antitumor efficacy and synergizes with PI3Ki BKM120, and warn that one should consider the "off target" effects of HCQ when used as autophagy inhibitor in the clinical treatment of cancer.


Assuntos
Aminopiridinas/uso terapêutico , Autofagia/efeitos dos fármacos , Hidroxicloroquina/uso terapêutico , Morfolinas/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Aminopiridinas/farmacologia , Animais , Humanos , Hidroxicloroquina/farmacologia , Camundongos , Camundongos Nus , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Peixe-Zebra
6.
Cell Death Discov ; 7(1): 178, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34247194

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, accounting for over 700,000 deaths each year. The lack of predictive and prognostic biomarkers for HCC, with effective therapy, remains a significant challenge for HCC management. Long non-coding RNAs (lncRNAs) play a key role in tumorigenesis and have clinical value as potential biomarkers in the early diagnosis and prediction of HCC. Jun activation domain-binding protein 1 (Jab1, also known as COP9 signalosome subunit 5, CSN5) is a potential oncogene that plays a critical role in the occurrence of HCC. Here, we performed a comprehensive analysis for Jab1/CSN5-associated lncRNAs to predict the prognosis of HCC. The differentially expressed (DE) lncRNAs between in HCC were analyzed based on the TCGA RNA-seq data. We detected 1031 upregulated lncRNAs in 371 HCC tissues and identified a seven-lncRNA signature strongly correlated with Jab1/CSN5 (SNHG6, CTD3065J16.9, LINC01604, CTD3025N20.3, KB-1460A1.5, RP13-582O9.7, and RP11-29520.2). We further evaluated the prognostic significance of these lncRNAs by GEPIA ( http://gepia.cancer-pku.cn/ ). The expression data in 364 liver tumors indicated that this seven-lncRNA signature could better predict worse survival in HCC patients. Moreover, 35 clinical HCC samples were evaluated to assess the validity and reproducibility of the bioinformatic analysis. We found that the targeted lncRNAs were upregulated, with a strong association with Jab1/CSN5 and prognostic value in HCC. Functional enrichment analysis by Gene Ontology (GO) showed that these seven prognostic lncRNAs exhibit oncogenic properties and are associated with prominent hallmarks of cancer. Overall, our findings demonstrate the clinical implication of Jab1/CSN5 with the seven-lncRNAs in predicting survival for patients with HCC.

7.
Oncol Lett ; 21(5): 413, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33841574

RESUMO

Non-small cell lung cancer (NSCLC) is a malignant tumor with high morbidity and mortality rates, which seriously endangers human health. Although treatment methods continue to evolve, the emergence of drug resistance is inevitable and seriously hinders the treatment of NSCLC. The tumor microenvironment (TME) protects tumor cells from the effects of chemotherapeutic drugs, which can lead to drug resistance. Cancer-associated fibroblasts (CAFs) are an important component of the TME, and various studies have demonstrated that CAFs play a crucial role in drug resistance in NSCLC. However, the drug resistance mechanism of CAFs and whether CAFs can be used as a target to reverse the resistance of tumor cells remain unclear. The present review discusses this issue and describes the heterogeneity of CAF markers, as well as their origins and resident organs, and the role and mechanism of this heterogeneity in NSCLC progression. Furthermore, the mechanism of CAF-mediated NSCLC resistance to chemotherapy, targeted therapy and immunotherapy is introduced, and strategies to reverse this resistance are described.

8.
PLoS One ; 15(8): e0237943, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790751

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0054565.].

9.
Onco Targets Ther ; 13: 5629-5642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606777

RESUMO

INTRODUCTION: Nasopharyngeal carcinoma (NPC) patients with HBsAg (+) commonly present with high frequencies of distant metastasis and poor survival rate; however, the mechanism has not been elucidated. MATERIALS AND METHODS: We analyzed the yes-associated protein 1 (YAP1) expression between HBsAg (+) and HBsAg (-) of NPC patients, then analyzed the relationship of YAP1 with survival. We further explored the anti-tumor role in NPC cell lines using YAP1 siRNA technique, and checked whether YAP1 regulatesepithelial-mesenchymal transition ( EMT). The relationship between HBV X protein (HBx) and YAP1 was also tested using Dual-Luciferase reporter assay. Finally, we explored anti-YAP1 to inhibit tumor metastasis using the xenograft mice model. RESULTS: In the current study, we found that YAP1 expression was higher in HBsAg (+) samples than in the HBsAg (-) samples, as a clinical signature, suggesting that YAP1 could be used as a prognostic factor for NPC. Our results showed that the HBx could regulate YAP1, further promoting cellular invasiveness through EMT. Anti-YAP1 can also decrease metastasis in vivo. CONCLUSION: Our findings suggest that YAP1 is a promising prognostic factor in NPC and could be used as a potential treatment target for NPC with HBV infection.

10.
Cancer Immunol Res ; 8(7): 952-965, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265228

RESUMO

Programmed cell death 1 ligand 1 (PD-L1) is a key driver of tumor-mediated immune suppression, and targeting it with antibodies can induce therapeutic responses. Given the costs and associated toxicity of PD-L1 blockade, alternative therapeutic strategies are needed. Using reverse-phase protein arrays to assess drugs in use or likely to enter trials, we performed a candidate drug screen for inhibitors of PD-L1 expression and identified verteporfin as a possible small-molecule inhibitor. Verteporfin suppressed basal and IFN-induced PD-L1 expression in vitro and in vivo through Golgi-related autophagy and disruption of the STAT1-IRF1-TRIM28 signaling cascade, but did not affect the proinflammatory CIITA-MHC II cascade. Within the tumor microenvironment, verteporfin inhibited PD-L1 expression, which associated with enhanced T-lymphocyte infiltration. Inhibition of chromatin-associated enzyme PARP1 induced PD-L1 expression in high endothelial venules (HEV) in tumors and, when combined with verteporfin, enhanced therapeutic efficacy. Thus, verteporfin effectively targets PD-L1 through transcriptional and posttranslational mechanisms, representing an alternative therapeutic strategy for targeting PD-L1.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Fator Regulador 1 de Interferon/metabolismo , Neoplasias/tratamento farmacológico , Fator de Transcrição STAT1/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Verteporfina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/farmacologia , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
11.
PLoS One ; 15(4): e0231003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240238

RESUMO

Systematic interrogation of tumor-infiltrating immune cells (TIICs) is key to the prediction of clinical outcome and development of immunotherapies. However, little is known about the TIICs of hepatocellular carcinoma (HCC) and its impact on the prognosis of patients and potential for immunotherapy. We applied CIBERSORT of 1090 tumors to infer the infiltration of 22 subsets of TIICs using gene expression data. Unsupervised clustering analysis by 22 TIICs revealed 4 clusters of tumors, mainly defined by macrophages and T cells, with distinct prognosis and associations with immune checkpoint molecules, including PD-1, CD274, CTLA-4, LAG-3 and IFNG. We found tumors with decreased number of M1 macrophages or increased regulatory T cells were associated with poor prognosis. Based on the multivariate Cox analysis, a nomogram was also established for clinical application. In conclusion, composition of the TIICs in HCC was quite different, which is an important determinant of prognosis with great potential to identify candidates for immunotherapy.


Assuntos
Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Feminino , Expressão Gênica/imunologia , Humanos , Imunoterapia/métodos , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptor de Morte Celular Programada 1/imunologia
12.
Cancer Lett ; 465: 12-23, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31473252

RESUMO

Triple-negative breast cancer (TNBC) is the breast cancer subtype with the poorest prognosis. Evidence indicates that aberrant JAB1/CSN5 expression is associated with advanced tumor stage and poor prognosis in breast cancer. In this study, we evaluated expression of JAB1 in TNBC and potential mechanisms regulating this expression. We found that miR-17 expression was lower in TNBC than in normal breast tissue, and miR-17 expression in patients with TNBC was associated with a good prognosis. Furthermore, JAB1 expression was regulated by miR-17 in TNBC cells, and mice with miR-17-overexpressing tumors had less tumor growth and lower tumor JAB1 expression than control mice. We also demonstrated that miR-17 suppressed JAB1's oncogenic function, leading to tumor growth inhibition and sensitizing TNBC cells to chemotherapy treatment. JAB1 knockdown in TNBC cells mimicked the effect of miR-17 overexpression and led to significant decreases in cell proliferation, colony formation, and migration, increased p27 expression, and enhanced cisplatin sensitivity. Our findings suggest that miR-17 acts as a tumor suppressor by directly targeting JAB1 in TNBC; this may lead to novel therapeutic targets and strategies for treating TNBC patients.


Assuntos
Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Prognóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancers (Basel) ; 11(7)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340499

RESUMO

Immune check point blockade therapy has revolutionized the standard of cancer treatment and is credited with producing remarkable tumor remissions and increase in overall survival. This unprecedented clinical success however is feasible for a limited number of cancer patients due to resistance occurring before or during a course of immunotherapy, which is often associated with activation of oncogenic signaling pathways, co-inhibitory checkpoints upregulation or expansion of immunosuppressive regulatory T-cells (Tregs) in the tumor microenviroment (TME). Targeted therapy aiming to inactivate a signaling pathway such as the Mitogen Activated Protein Kinases (MAPKs) has recently received a lot of attention due to emerging data from preclinical studies indicating synergy with immune checkpoint blockade therapy. The dimeric transcription factor complex Activator Protein-1 (AP-1) is a group of proteins involved in a wide array of cell processes and a critical regulator of nuclear gene expression during T-cell activation. It is also one of the downstream targets of the MAPK signaling cascade. In this review, we will attempt to unravel the roles of AP-1 in the regulation of anti-tumor immune responses, with a focus on the regulation of immune checkpoints and Tregs, seeking to extract useful insights for more efficacious immunotherapy.

14.
Cell Signal ; 53: 39-48, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30244171

RESUMO

Jab1 overexpression correlates with poor prognosis in breast cancer patients, suggestting that targeting the aberrant Jab1 signaling in breast cancer could be a promising strategy. In the current study, we investigate the hypothesis that Jab1 positively regulates the DNA repair protein Rad51 and, in turn, the cellular response of breast cancer to chemotherapy with adriamycin and cisplatin. High-throughput mRNA sequencing (RNA-Seq) data from 113 normal and 1109 tumor tissues (obtained from TCGA) were integrated to our analysis to give further support to our findings. We found that Jab1 was overexpressed in adriamycin-resistant breast cancer cell MCF-7R compared with parental MCF-7 cells, and that knockdown of Jab1 expression conferred cellular sensitivity to adriamycin and cisplatin both in vivo and in vitro. By contrast, exogenous Jab1 expression enhanced the resistance of breast cancer cells to adriamycin and cisplatin. Moreover, we discovered that Jab1 positively regulated Rad51 in p53-dependent manner and that overexpression of Rad51 conferred cellular resistance to adriamycin and cisplatin in Jab1-deficient cells. Data from TCGA further validated an correlation between Jab1 and Rad51 in breast cancer, and elevated Jab1 and Rad51 associated with poor survival in breast cancer patients. Our findings indicate that Jab1 association with Rad51 plays an important role in cellular response to chemotherapy in breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexo do Signalossomo COP9/genética , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Exonucleases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeo Hidrolases/genética , Neoplasias da Mama/genética , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7
15.
Oncol Rep ; 40(5): 2536-2546, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226609

RESUMO

Distant metastasis is the major contributor to treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). The lack of effective treatment strategies for metastatic NPC is the major cause for the low survival rate. Therefore, it is crucial to understand the molecular mechanisms underlying NPC metastasis and to identify potential biomarkers for targeted therapy. MicroRNA (miRNAs or miRs) have been shown to play an important role in tumorigenesis and metastasis. In the present study, we aimed to evaluate the significance of hsa­miR­24 in NPC metastasis. Significantly lower hsa­miR­24 levels were observed in NPC metastatic tumors and higher hsa­miR­24 levels were associated with longer progression­free and metastasis­free survival durations. hsa­miR­24 overexpression inhibited cell proliferation, invasion and migration. Using bioinformatics approaches together with functional luciferase reporter assays, we demonstrated that the c­Myc 3'­UTR was a direct target of hsa­miR­24 in regulating NPC metastasis. Protein profiling analysis revealed that a high c­Myc expression was inversely associated with metastasis­free overall survival and with epithelial­mesenchymal transition (EMT). Furthermore, the overexpression of hsa­miR­24 decreased NPC cell invasive ability induced by the overexpression of c­Myc, associated with EMT epithelial marker (E­cadherin) restoration. Thus, on the whole, the findings of this study demonstrate that hsa­miR­24 suppresses metastasis in NPC by regulating the c­Myc/EMT axis, suggesting that hsa­miR­24 may be used as a prognostic factor and as a novel target for the prevention of NPC metastasis.


Assuntos
Carcinoma/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/genética , Proteínas Proto-Oncogênicas c-myc/genética , Idoso , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Transdução de Sinais/genética
16.
Front Pharmacol ; 9: 135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535627

RESUMO

C-Jun activation domain-binding protein-1 (Jab1) involves in controlling cellular proliferation, cell cycle, apoptosis, affecting a series of pathways, as well as regulating genomic instability and DNA damage response (DDR). Jab1/COPS5 dysregulation contributes to oncogenesis by deactivating several tumor suppressors and activating oncogenes. Jab1 overexpression was found in many tumor types, illuminating its important role in cancer initiation, progression, and prognosis. Jab1/COPS5 has spurred a strong research interest in developing inhibitors of oncogenes/oncoproteins for cancer therapy. In this paper, we present evidences demonstrating the importance of Jab1/COPS5 overexpression in several cancer types and recent advances in dissecting the Jab1/COPS5 upstream and downstream signaling pathways. By conducting ingenuity pathway analysis (IPA) based on the Ingenuity Knowledge Base, we investigated signaling network that interacts with Jab1/COPS5. The data confirmed the important role of Jab1/COPS5 in tumorigenesis, demonstrating the potential of Jab1/COPS5 to be used as a biomarker for cancer patients, and further support that Jab1/COPS5 may serve as a potential therapeutic target in different cancers.

17.
Clin Cancer Res ; 23(15): 4450-4461, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270496

RESUMO

Purpose: High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway.Experimental Design: We studied ROS levels and conducted c-Jun activation domain-binding protein-1 (JAB1/COPS5) and thioredoxin (TRX) gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1's regulation of Trx in leukemia cell lines.Results: Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of TRX and JAB1/COPS5 were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivoConclusions: We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. Clin Cancer Res; 23(15); 4450-61. ©2017 AACR.


Assuntos
Complexo do Signalossomo COP9/sangue , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Leucemia Monocítica Aguda/sangue , Estresse Oxidativo/genética , Peptídeo Hidrolases/sangue , Tiorredoxinas/sangue , Adolescente , Adulto , Idoso , Complexo do Signalossomo COP9/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Criança , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Peptídeo Hidrolases/genética , Espécies Reativas de Oxigênio/metabolismo , Recidiva , Transdução de Sinais/genética , Tiorredoxinas/genética
18.
Epigenetics ; 12(3): 187-197, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28059592

RESUMO

microRNAs (miRNAs) and DNA methylation are the 2 epigenetic modifications that have emerged in recent years as the most critical players in the regulation of gene expression. Compelling evidence has indicated the roles of miRNAs and DNA methylation in modulating cellular transformation and tumorigenesis. miRNAs act as negative regulators of gene expression and are involved in the regulation of both physiologic conditions and during diseases, such as cancer, inflammatory diseases, and psychiatric disorders, among others. Meanwhile, aberrant DNA methylation manifests in both global genome changes and in localized gene promoter changes, which influences the transcription of cancer genes. In this review, we described the mutual regulation of miRNAs and DNA methylation in human cancers. miRNAs regulate DNA methylation by targeting DNA methyltransferases or methylation-related proteins. On the other hand, both hyper- and hypo-methylation of miRNAs occur frequently in human cancers and represent a new level of complexity in gene regulation. Therefore, understanding the mechanisms underlying the mutual regulation of miRNAs and DNA methylation may provide helpful insights in the development of efficient therapeutic approaches.


Assuntos
Metilação de DNA/genética , Epigênese Genética , MicroRNAs/genética , Neoplasias/genética , Ilhas de CpG/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Regiões Promotoras Genéticas
19.
Proteomics Clin Appl ; 11(5-6)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27883284

RESUMO

PURPOSE: In patients with Epstein-Barr virus (EBV) associated nasopharyngeal carcinoma (NPC), intertumor heterogeneity causes interpatient heterogeneity in the risk of distant metastasis. We aimed to identify novel biomarkers of metastasis risk using reverse phase protein array (RPPA) profiling of NPC patients at risk for metastasis and considering plasma EBV DNA load. EXPERIMENTAL DESIGN: A total of 98 patients with NPC with and without metastasis after treatment, matched with respect to clinical parameters, are enrolled. Total protein expression is measured by RPPA, and protein functions are analyzed by pathway bioinformatics. RESULTS: The RPPA analysis revealed a profile of 70 proteins that are differentially expressed in metastatic and nonmetastatic tumors. Plasma EBV DNA load after treatment correlated with protein expression level better than plasma EBV DNA load before treatment did. The biomarkers of NPC metastasis identified by proteomics regulate signaling pathways involved in cell cycle progression, apoptosis, and epithelial-mesenchymal transition. The authors identified 26 biomarkers associated with 5-year distant failure-free survival in univariate analysis; five biomarkers remained significant in multivariate analysis. CONCLUSIONS AND CLINICAL RELEVANCE: A comprehensive RPPA profiling study is warranted to identify novel metastasis-related biomarkers and further examine the activation state of signaling proteins to improve estimation of metastasis risk for patients with EBV-associated NPC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma/metabolismo , Carcinoma/patologia , DNA Viral/sangue , Herpesvirus Humano 4/fisiologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Análise Serial de Proteínas , Carcinoma/genética , Carcinoma/virologia , Feminino , Perfilação da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virologia , Metástase Neoplásica , Medição de Risco
20.
Hepatology ; 63(3): 898-913, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26606000

RESUMO

UNLABELLED: Down-regulation of p57 (KIP2) cyclin-dependent kinase inhibitors accelerates the growth and invasion of hepatocellular carcinoma (HCC), suggesting that p57 may play an important role in liver carcinogenesis. However, the mechanism or oncogenic signal leading to p57 down-regulation in HCC remains to be determined. Herein, we demonstrated that Jab1/Csn5 expression is negatively correlated with p57 levels in HCC tissues. Kaplan-Meier analysis of tumor samples revealed that high Jab1/Csn5 expression with concurrent low p57 expression is associated with poor overall survival. The inverse pattern of Jab1 and p57 expression was also observed during carcinogenesis in a chemically induced rat HCC model. We also found that mechanistically, Jab1-mediated p57 proteolysis in HCC cells is dependent on 26S-proteasome inhibitors. We further demonstrated that direct physical interaction between Jab1 and p57 triggers p57 down-regulation, independently of Skp2 and Akt pathways, in HCC cells. These data suggest that Jab1 is an important upstream negative regulator of p57 and that aberrant expression of Jab1 in HCC could lead to a significant decrease in p57 levels and contribute to tumor cell growth. Furthermore, restoration of p57 levels induced by loss of Jab1 inhibited tumor cell growth and further increased cell apoptosis in HCC cells. Moreover, silencing Jab1 expression further enhanced the antitumor effects of cisplatin-induced apoptosis in HCC cells. CONCLUSION: Jab1-p57 pathway confers resistance to chemotherapy and may represent a potential target for investigational therapy in HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/etiologia , Peptídeo Hidrolases/metabolismo , Animais , Complexo do Signalossomo COP9 , Carcinogênese , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Cisplatino , Regulação para Baixo , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Proteínas Quinases Associadas a Fase S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA