Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 2607, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147282

RESUMO

Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.


Assuntos
Biodiversidade , Ecossistema , Plantas , Causalidade , Biomassa
3.
Ecol Evol ; 12(12): e9638, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36545367

RESUMO

Improved understanding of complex dynamics has revealed insights across many facets of ecology, and has enabled improved forecasts and management of future ecosystem states. However, an enduring challenge in forecasting complex dynamics remains the differentiation between complexity and stochasticity, that is, to determine whether declines in predictability are caused by stochasticity, nonlinearity, or chaos. Here, we show how to quantify the relative contributions of these factors to prediction error using Georgii Gause's iconic predator-prey microcosm experiments, which, critically, include experimental replicates that differ from one another only in initial abundances. We show that these differences in initial abundances interact with stochasticity, nonlinearity, and chaos in unique ways, allowing us to identify the impacts of these factors on prediction error. Our results suggest that jointly analyzing replicate time series across multiple, distinct starting points may be necessary for understanding and predicting the wide range of potential dynamic types in complex ecological systems.

4.
Ecol Lett ; 24(7): 1474-1486, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33945663

RESUMO

Ecological stability refers to a family of concepts used to describe how systems of interacting species vary through time and respond to disturbances. Because observed ecological stability depends on sampling scales and environmental context, it is notoriously difficult to compare measurements across sites and systems. Here, we apply stochastic dynamical systems theory to derive general statistical scaling relationships across time, space, and ecological level of organisation for three fundamental stability aspects: resilience, resistance, and invariance. These relationships can be calibrated using random or representative samples measured at individual scales, and projected to predict average stability at other scales across a wide range of contexts. Moreover deviations between observed vs. extrapolated scaling relationships can reveal information about unobserved heterogeneity across time, space, or species. We anticipate that these methods will be useful for cross-study synthesis of stability data, extrapolating measurements to unobserved scales, and identifying underlying causes and consequences of heterogeneity.


Assuntos
Ecossistema , Projetos de Pesquisa
5.
Ecol Lett ; 23(6): 983-993, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32243074

RESUMO

Although numerous studies show that communities are jointly influenced by predation and competitive interactions, few have resolved how temporal variability in these interactions influences community assembly and stability. Here, we addressed this challenge in experimental microbial microcosms by employing empirical dynamic modelling tools to: (1) detect causal interactions between prey species in the absence and presence of a predator; (2) quantify the time-varying strength of these interactions and (3) explore stability in the resulting communities. Our findings show that predators boost the number of causal interactions among community members, and lead to reduced dynamic stability, but higher coexistence among prey species. These results correspond to time-varying changes in species interactions, including emergence of morphological characteristics that appeared to reduce predation, and indirectly facilitate growth of predator-susceptible species. Jointly, our findings suggest that careful consideration of both context and time may be necessary to predict and explain outcomes in multi-trophic systems.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais
6.
Nat Ecol Evol ; 4(4): 660, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32203480

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nat Ecol Evol ; 4(4): 550-559, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32123320

RESUMO

Unprecedented species loss in diverse forests indicates the urgent need to test its consequences for ecosystem functioning. However, experimental evaluation based on realistic extinction scenarios is lacking. Using species interaction networks we introduce an approach to separate effects of node loss (reduced species number) from effects of link loss or compensation (reduced or increased interspecific interactions) on ecosystem functioning along directed extinction scenarios. By simulating random and non-random extinction scenarios in an experimental subtropical Chinese forest, we find that species loss is detrimental for stand volume in all scenarios, and that these effects strengthen with age. However, the magnitude of these effects depends on the type of attribute on which the directed species loss is based, with preferential loss of evolutionarily distinct species and those from small families having stronger effects than those that are regionally rare or have high specific leaf area. These impacts were due to both node loss and link loss or compensation. At high species richness (reductions from 16 to 8 species), strong stand-volume reduction only occurred in directed but not random extinction. Our results imply that directed species loss can severely hamper productivity in already diverse young forests.


Assuntos
Ecossistema , Árvores , Biodiversidade , Florestas , Folhas de Planta
8.
Methods Ecol Evol ; 10(12): 2141-2152, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31844508

RESUMO

Declines in global biodiversity have inspired a generation of studies that seek to characterize relationships between biodiversity and ecosystem functioning. The metrics for complementarity and selection effects derived by Loreau and Hector in 2001 remain some of the most influential and widely used statistics for studying these relationships. These metrics quantify the degree to which the effect of biodiversity on a given ecosystem function depends on only a few species that perform well in monoculture and in mixture (the selection effect) or if the effect of biodiversity on a given ecosystem function is independent of monoculture performance (the complementarity effect). This distinction may be useful in determining the consequences of the loss of rare versus common or dominant species in natural systems. However, because these metrics require observations of all species in a community in monoculture, applications in natural systems have been limited.Here, we derive a statistical augmentation of the original partition, which can be applied to incomplete random samples of species drawn from a larger pool. This augmentation controls for the bias introduced by using only a subsample of species in monocultures rather than having monocultures of all species.Using simulated and empirical examples, we demonstrate the robustness of these metrics, and provide source code for calculating them. We find that these augmentations provide a reliable estimate of complementarity and selection effects as long as approximately 50% of the species present in mixture are present in monoculture and these species represent a random subset of the mixture.We foresee two primary applications for this method: (a) estimating complementarity and selection effects for experimentally assembled communities where monoculture data are lacking for some species, and (b) extrapolating results from biodiversity experiments to diverse natural systems.

9.
Nat Ecol Evol ; 3(11): 1533-1538, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666737

RESUMO

At the global scale, human activities are threatening the extinction of many species. It remains debated, however, whether there has been corresponding loss of biodiversity at the smaller spatial scales at which species loss often erodes ecosystem functioning, stability and services. Here we consider changes in local biodiversity and productivity over 37 years in 21 grasslands and savannahs with known agricultural land-use histories. We show that, during the century following agricultural abandonment, local plant diversity recovers only incompletely and plant productivity does not significantly recover. By 91 years after agricultural abandonment, despite many local species gains, formerly ploughed fields still had only three quarters of the plant diversity and half of the plant productivity observed in a nearby remnant ecosystem that has never been ploughed. The large and growing extent of recovering ecosystems provides an unprecedented opportunity to reverse the impacts of habitat loss. Active restoration efforts are needed to enable and accelerate recovery.


Assuntos
Biodiversidade , Ecossistema , Agricultura , Plantas
10.
Theor Popul Biol ; 123: 35-44, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859932

RESUMO

Because the Lotka-Volterra competitive equations posit no specific competitive mechanisms, they are exceedingly general, and can theoretically approximate any underlying mechanism of competition near equilibrium. In practice, however, these models rarely generate accurate predictions in diverse communities. We propose that this difference between theory and practice may be caused by how uncertainty propagates through Lotka-Volterra systems. In approximating mechanistic relationships with Lotka-Volterra models, associations among parameters are lost, and small variation can correspond to large and unrealistic changes in predictions. We demonstrate that constraining Lotka-Volterra models using correlations among parameters expected from hypothesized underlying mechanisms can reintroduce some of the underlying structure imposed by those mechanisms, thereby improving model predictions by both reducing bias and increasing precision. Our results suggest that this hybrid approach may combine some of the generality of phenomenological models with the broader applicability and meaningful interpretability of mechanistic approaches. These methods could be useful in poorly understood systems for identifying important coexistence mechanisms, or for making more accurate predictions.


Assuntos
Ecossistema , Modelos Teóricos , Humanos , Dinâmica Populacional , Processos Estocásticos , Incerteza
11.
Am Nat ; 190(1): E1-E12, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28617631

RESUMO

For many taxa and systems, species richness peaks at midelevations. One potential explanation for this pattern is that large-scale changes in climate and geography have, over evolutionary time, selected for traits that are favored under conditions found in contemporary midelevation regions. To test this hypothesis, we use records of historical temperature and topographic changes over the past 65 Myr to construct a general simulation model of plethodontid salamander evolution in eastern North America. We then explore possible mechanisms constraining species to midelevation bands by using the model to predict plethodontid evolutionary history and contemporary geographic distributions. Our results show that models that incorporate both temperature and topographic changes are better able to predict these patterns, suggesting that both processes may have played an important role in driving plethodontid evolution in the region. Additionally, our model (whose annotated source code is included as a supplement) represents a proof of concept to encourage future work that takes advantage of recent advances in computing power to combine models of ecology, evolution, and earth history to better explain the abundance and distribution of species over time.


Assuntos
Filogenia , Temperatura , Urodelos , Animais , Clima , Geografia , América do Norte , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA