Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37189414

RESUMO

Intrinsically disordered proteins play important roles in cell signaling, and dysregulation of these proteins is associated with several diseases. Prostate apoptosis response-4 (Par-4), an approximately 40 kilodalton proapoptotic tumor suppressor, is a predominantly intrinsically disordered protein whose downregulation has been observed in various cancers. The caspase-cleaved fragment of Par-4 (cl-Par-4) is active and plays a role in tumor suppression by inhibiting cell survival pathways. Here, we employed site-directed mutagenesis to create a cl-Par-4 point mutant (D313K). The expressed and purified D313K protein was characterized using biophysical techniques, and the results were compared to that of the wild-type (WT). We have previously demonstrated that WT cl-Par-4 attains a stable, compact, and helical conformation in the presence of a high level of salt at physiological pH. Here, we show that the D313K protein attains a similar conformation as the WT in the presence of salt, but at an approximately two times lower salt concentration. This establishes that the substitution of a basic residue for an acidic residue at position 313 alleviates inter-helical charge repulsion between dimer partners and helps to stabilize the structural conformation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Neoplasias , Masculino , Humanos , Conformação Proteica , Modelos Moleculares , Genes Supressores de Tumor , Mutagênese Sítio-Dirigida , Proteínas Intrinsicamente Desordenadas/química , Dicroísmo Circular
3.
Biochim Biophys Acta Mol Cell Res ; 1867(6): 118674, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32035967

RESUMO

Increased Pur-alpha (Pura) protein levels in animal models alleviate certain cellular symptoms of the disease spectrum amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). Pura is a member of the Pur family of evolutionarily conserved guanine-rich polynucleotide binding proteins containing a repeated signature PUR domain of 60-80 amino acids. Here we have employed a synthetic peptide, TZIP, similar to a Pur domain, but with sequence alterations based on a consensus of evolutionarily conserved Pur family binding domains and having an added transporter sequence. A major familial form of ALS/FTD, C9orf72 (C9), is due to a hexanucleotide repeat expansion (HRE) of (GGGGCC), a Pur binding element. We show by circular dichroism that RNA oligonucleotides containing this purine-rich sequence consist largely of parallel G-quadruplexes. TZIP peptide binds this repeat sequence in both DNA and RNA. It binds the RNA element, including the G-quadruplexes, with a high degree of specificity versus a random oligonucleotide. In addition, TZIP binds both linear and G-quadruplex repeat RNA to form higher order G-quadruplex secondary structures. This change in conformational form by Pur-based peptide represents a new mechanism for regulating G quadruplex secondary structure within the C9 repeat. TZIP modulation of C9 RNA structural configuration may alter interaction of the complex with other proteins. This Pur-based mechanism provides new targets for therapy, and it may help to explain Pura alleviation of certain cellular pathological aspects of ALS/FTD.


Assuntos
Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/química , Peptídeos/farmacologia , Fatores de Transcrição/química , Proteína C9orf72/química , Dicroísmo Circular , Expansão das Repetições de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Humanos , Modelos Moleculares , Mimetismo Molecular , Peptídeos/síntese química , RNA/química , RNA/metabolismo , Termodinâmica , Fatores de Transcrição/metabolismo
4.
FEBS J ; 286(20): 4060-4073, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31177609

RESUMO

The prostate apoptosis response-4 (Par-4) tumor suppressor can selectively kill cancer cells via apoptosis while leaving healthy cells unharmed. Full length Par-4 has been shown to be predominantly intrinsically disordered in vitro under neutral conditions. As part of the apoptotic process, cellular Par-4 is cleaved at D131 by caspase-3, which generates a 24 kDa C-terminal activated fragment (cl-Par-4) that enters the nucleus and inhibits pro-survival genes, thereby preventing cancer cell proliferation. Here, the structure of cl-Par-4 was investigated using CD spectroscopy, dynamic light scattering, intrinsic tyrosine fluorescence, and size exclusion chromatography with mutli-angle light scattering. Biophysical characterization shows that cl-Par-4 aggregates and is disordered at low ionic strength. However, with increasing ionic strength, cl-Par-4 becomes progressively more helical and less aggregated, ultimately forming largely ordered tetramers at high NaCl concentration. These results, together with previous results showing induced folding at acidic pH, suggest that the in vivo structure and self-association state of cl-Par-4 may be strongly dependent upon cellular environment.


Assuntos
Proteínas Reguladoras de Apoptose/química , Apoptose , Caspase 3/metabolismo , Genes Supressores de Tumor , Multimerização Proteica , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Sais/química , Homologia de Sequência
5.
Biomolecules ; 8(4)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518159

RESUMO

Prostate apoptosis response-4 (Par-4) is a 38 kDa largely intrinsically disordered tumor suppressor protein that functions in cancer cell apoptosis. Par-4 down-regulation is often observed in cancer while up-regulation is characteristic of neurodegenerative conditions such as Alzheimer's disease. Cleavage of Par-4 by caspase-3 activates tumor suppression via formation of an approximately 25 kDa fragment (cl-Par-4) that enters the nucleus and inhibits Bcl-2 and NF-ƙB, which function in pro-survival pathways. Here, we have investigated the structure of cl-Par-4 using biophysical techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and intrinsic tyrosine fluorescence. The results demonstrate pH-dependent folding of cl-Par-4, with high disorder and aggregation at neutral pH, but a largely folded, non-aggregated conformation at acidic pH.


Assuntos
Doença de Alzheimer/genética , Proteínas Reguladoras de Apoptose/química , Núcleo Celular/química , Agregação Patológica de Proteínas/genética , Doença de Alzheimer/patologia , Proteínas Reguladoras de Apoptose/genética , Fenômenos Biofísicos , Caspase 3/química , Caspase 3/genética , Núcleo Celular/genética , Dicroísmo Circular , Difusão Dinâmica da Luz , Fluorescência , Genes Supressores de Tumor , Humanos , Concentração de Íons de Hidrogênio , NF-kappa B/genética , Domínios Proteicos/genética , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA