Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nature ; 630(8015): 70-76, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811730

RESUMO

Colour centres in diamond have emerged as a leading solid-state platform for advancing quantum technologies, satisfying the DiVincenzo criteria1 and recently achieving quantum advantage in secret key distribution2. Blueprint studies3-5 indicate that general-purpose quantum computing using local quantum communication networks will require millions of physical qubits to encode thousands of logical qubits, presenting an open scalability challenge. Here we introduce a modular quantum system-on-chip (QSoC) architecture that integrates thousands of individually addressable tin-vacancy spin qubits in two-dimensional arrays of quantum microchiplets into an application-specific integrated circuit designed for cryogenic control. We demonstrate crucial fabrication steps and architectural subcomponents, including QSoC transfer by means of a 'lock-and-release' method for large-scale heterogeneous integration, high-throughput spin-qubit calibration and spectral tuning, and efficient spin state preparation and measurement. This QSoC architecture supports full connectivity for quantum memory arrays by spectral tuning across spin-photon frequency channels. Design studies building on these measurements indicate further scaling potential by means of increased qubit density, larger QSoC active regions and optical networking across QSoC modules.

2.
Nano Lett ; 24(4): 1316-1323, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227973

RESUMO

Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.

3.
Nano Lett ; 23(17): 7852-7858, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643457

RESUMO

A central goal in many quantum information processing applications is a network of quantum memories that can be entangled with each other while being individually controlled and measured with high fidelity. This goal has motivated the development of programmable photonic integrated circuits (PICs) with integrated spin quantum memories using diamond color center spin-photon interfaces. However, this approach introduces a challenge into the microwave control of individual spins within closely packed registers. Here, we present a quantum memory-integrated photonics platform capable of (i) the integration of multiple diamond color center spins into a cryogenically compatible, high-speed programmable PIC platform, (ii) selective manipulation of individual spin qubits addressed via tunable magnetic field gradients, and (iii) simultaneous control of qubits using numerically optimized microwave pulse shaping. The combination of localized optical control, enabled by the PIC platform, together with selective spin manipulation opens the path to scalable quantum networks on intrachip and interchip platforms.

4.
Top Companion Anim Med ; 51: 100735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36273749

RESUMO

Veterinarians often test for serologic evidence of vector-borne infections in sick dogs presenting with clinical signs or to screen for subclinical chronic infections. Additional peptide targets for the detection of antibodies to Anaplasma phagocytophilum, Anaplasma platys, and Ehrlichia canis were added to an existing point-of-care (POC) ELISA test (SNAP 4Dx Plus Test, IDEXX Laboratories, Westbrook, ME). This second-generation, multi-analyte test detects Dirofilaria immitis antigen and antibodies to Anaplasma spp., Borrelia burgdorferi, and Ehrlichia spp. The second-generation test is expected to better meet the needs of practicing veterinarians and their patients. To assess this expectation, the second-generation POC test was evaluated with serum samples from experimentally infected dogs and a broader field population of dogs. Compared to the first-generation test, most dogs experimentally infected with A phagocytophilum (n = 7/8), A platys (n = 4/6), or E canis (n = 4/6) had detectable antibody responses 3-22 days earlier post-infection; these results demonstrated better alignment with polymerase chain reaction (PCR) amplification results and the onset of clinical signs. Using a convenience sample set of 510 sera from both academic and commercial veterinary diagnostic laboratories, the second-generation test had sensitivities greater than 90% for Anaplasma spp. (94.1%), B burgdorferi (95.5%), Ehrlichia spp. (93.4%) and D immitis (98.0%). Specificity ranged from 96.8% - 100% across the four assays. Results from this study demonstrate that the second-generation POC ELISA had an improved ability to detect serologic responses during the acute phase of A phagocytophilum, A platys, and E canis experimental infections. The results from the broader field samples support overall high sensitivity and specificity, consistent with the historical performance of the first-generation POC ELISA test.


Assuntos
Anaplasmose , Dirofilaria immitis , Dirofilariose , Doenças do Cão , Ehrlichiose , Doença de Lyme , Doenças Transmitidas por Carrapatos , Cães , Animais , Sistemas Automatizados de Assistência Junto ao Leito , Dirofilariose/diagnóstico , Doença de Lyme/diagnóstico , Doença de Lyme/veterinária , Anticorpos Antibacterianos , Ehrlichiose/diagnóstico , Ehrlichiose/veterinária , Doenças Transmitidas por Carrapatos/veterinária , Ehrlichia , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos
5.
Viruses ; 13(2)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671961

RESUMO

Longitudinal studies of cats naturally infected with feline leukemia virus (FeLV) are important for understanding disease outcomes. Levels of p27 antigen and copy numbers of proviral DNA have been associated with FeLV-infection courses. The purpose of this prospective study was to establish cutoff values for p27 antigen concentration and proviral DNA load that distinguished high positive from low positive groups of cats and to evaluate an association with survival. At enrollment, 254 cats were tested by point-of-care and microtiter plate enzyme-linked immunosorbent assays (ELISAs) for p27 antigen and real-time polymerase chain reaction (PCR) for proviral DNA. The 127 positive cats were retested monthly for six months and monitored for survival over the four-year study. A receiver operating characteristic-based analysis of samples with concordant or discordant qualitative results for p27 antigen and proviral DNA was used to establish cutoff values, and when applied to test results at enrollment for classifying cats as high positive or low positive, a significant difference in survival was observed. High positive cats had a median survival of 1.37 years (95% CI 0.83-2.02) from time of enrollment, while most low positive cats were still alive (93.1% survival). Quantitative results for p27 antigen concentration and proviral DNA load were highly correlated with survival times in FeLV-infected cats.


Assuntos
Antígenos Virais/metabolismo , Vírus da Leucemia Felina/fisiologia , Leucemia Felina/virologia , Infecções por Retroviridae/veterinária , Animais , Antígenos Virais/análise , Antígenos Virais/genética , Gatos , DNA Viral/genética , DNA Viral/metabolismo , Feminino , Dosagem de Genes , Vírus da Leucemia Felina/genética , Leucemia Felina/mortalidade , Estudos Prospectivos , Provírus/genética , Provírus/fisiologia , Infecções por Retroviridae/mortalidade , Infecções por Retroviridae/virologia , Carga Viral
6.
Comp Immunol Microbiol Infect Dis ; 67: 101348, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31527012

RESUMO

Feline leukemia virus (FeLV) is an oncogenic retrovirus of cats. While higher viral RNA and proviral DNA loads have been correlated with progressive infections and disease, a similar correlation has been suggested for p27 antigen concentrations. This analytical study compared the results of a quantitative ELISA for p27 antigen with quantitative real-time PCR results for FeLV proviral DNA in patient samples. A significant positive correlation between copies of proviral DNA and the concentration of p27 antigen was identified (r = 0.761, P < 0.0001). Samples with high proviral DNA loads, at least 1 × 106 copies/mL of whole blood, typically had p27 antigen concentrations greater than 30 ng/mL in plasma. Samples with proviral DNA loads below this level all had concentrations of p27 antigen in plasma that were less than 10 ng/mL. Given this correlation, it is hypothesized that the concentration of p27 antigen at a given point in time may help to indicate the likelihood of a progressive or regressive infection similar to what has been demonstrated for proviral DNA loads.


Assuntos
DNA Viral/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/imunologia , Antígeno Nuclear de Célula em Proliferação/sangue , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Gatos , DNA Viral/genética , Antígeno Nuclear de Célula em Proliferação/imunologia , Provírus/genética , Infecções por Retroviridae/diagnóstico , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/diagnóstico , Infecções Tumorais por Vírus/veterinária , Infecções Tumorais por Vírus/virologia , Carga Viral/métodos
7.
Nature ; 572(7770): 497-501, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367036

RESUMO

Layered antiferromagnetism is the spatial arrangement of ferromagnetic layers with antiferromagnetic interlayer coupling. The van der Waals magnet chromium triiodide (CrI3) has been shown to be a layered antiferromagnetic insulator in its few-layer form1, opening up opportunities for various functionalities2-7 in electronic and optical devices. Here we report an emergent nonreciprocal second-order nonlinear optical effect in bilayer CrI3. The observed second-harmonic generation (SHG; a nonlinear optical process that converts two photons of the same frequency into one photon of twice the fundamental frequency) is several orders of magnitude larger than known magnetization-induced SHG8-11 and comparable to the SHG of the best (in terms of nonlinear susceptibility) two-dimensional nonlinear optical materials studied so far12,13 (for example, molybdenum disulfide). We show that although the parent lattice of bilayer CrI3 is centrosymmetric, and thus does not contribute to the SHG signal, the observed giant nonreciprocal SHG originates only from the layered antiferromagnetic order, which breaks both the spatial-inversion symmetry and the time-reversal symmetry. Furthermore, polarization-resolved measurements reveal underlying C2h crystallographic symmetry-and thus monoclinic stacking order-in bilayer CrI3, providing key structural information for the microscopic origin of layered antiferromagnetism14-18. Our results indicate that SHG is a highly sensitive probe of subtle magnetic orders and open up possibilities for the use of two-dimensional magnets in nonlinear and nonreciprocal optical devices.

8.
Nano Lett ; 19(6): 3993-3998, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31083954

RESUMO

The recent discovery of magnetism in atomically thin layers of van der Waals (vdW) crystals has created new opportunities for exploring magnetic phenomena in the two-dimensional (2D) limit. In most 2D magnets studied to date, the c-axis is an easy axis, so that at zero applied field the polarization of each layer is perpendicular to the plane. Here, we demonstrate that atomically thin CrCl3 is a layered antiferromagnetic insulator with an easy-plane normal to the c-axis, that is, the polarization is in the plane of each layer and has no preferred direction within it. Ligand-field photoluminescence at 870 nm is observed down to the monolayer limit, demonstrating its insulating properties. We investigate the in-plane magnetic order using tunneling magnetoresistance in graphene/CrCl3/graphene tunnel junctions, establishing that the interlayer coupling is antiferromagnetic down to the bilayer. From the temperature dependence of the magnetoresistance, we obtain an effective magnetic phase diagram for the bilayer. Our result shows that CrCl3 should be useful for studying the physics of 2D phase transitions and for making new kinds of vdW spintronic devices.

9.
Nat Nanotechnol ; 13(7): 544-548, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29686292

RESUMO

Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions1-3, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy4-6. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction2,4,7-9. Owing to their unique magnetic properties10-14, the recently reported two-dimensional magnets provide a new system for studying these features15-19. For instance, a bilayer of chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition15,16. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.

10.
Nat Nanotechnol ; 13(1): 59-64, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158602

RESUMO

Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (XD) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of XD states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the XD emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe2 on a gold substrate, we demonstrate ~6 × 105-fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 103 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

11.
Nano Lett ; 17(12): 7761-7766, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29119791

RESUMO

Modulation of weak interlayer interactions between quasi-two-dimensional atomic planes in the transition metal dichalcogenides (TMDCs) provides avenues for tuning their functional properties. Here we show that above-gap optical excitation in the TMDCs leads to an unexpected large-amplitude, ultrafast compressive force between the two-dimensional layers, as probed by in situ measurements of the atomic layer spacing at femtosecond time resolution. We show that this compressive response arises from a dynamic modulation of the interlayer van der Waals interaction and that this represents the dominant light-induced stress at low excitation densities. A simple analytic model predicts the magnitude and carrier density dependence of the measured strains. This work establishes a new method for dynamic, nonequilibrium tuning of correlation-driven dispersive interactions and of the optomechanical functionality of TMDC quasi-two-dimensional materials.

12.
Nature ; 546(7657): 270-273, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28593970

RESUMO

Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

13.
J Vet Diagn Invest ; 29(5): 654-659, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28548572

RESUMO

Feline leukemia virus (FeLV) is an oncogenic retrovirus of cats. Immunoassays for the p27 core protein of FeLV aid in the detection of FeLV infections. Commercial microtiter-plate ELISAs have rapid protocols and visual result interpretation, limiting their usefulness in high-throughput situations. The purpose of our study was to validate the PetChek FeLV 15 ELISA, which is designed for the reference laboratory, and incorporates sequential, orthogonal screening and confirmatory protocols. A cutoff for the screening assay was established with 100% accuracy using 309 feline samples (244 negative, 65 positive) defined by the combined results of FeLV PCR and an independent reference p27 antigen ELISA. Precision of the screening assay was measured using a panel of 3 samples (negative, low-positive, and high-positive). The intra-assay coefficient of variation (CV) was 3.9-7.9%; the inter-assay CV was 6.0-8.6%. For the confirmatory assay, the intra-assay CV was 3.0-4.7%, and the inter-assay CV was 7.4-9.7%. The analytical sensitivity for p27 antigen was 3.7 ng/mL for inactivated whole FeLV and 1.2 ng/mL for purified recombinant FeLV p27. Analytical specificity was demonstrated based on the absence of cross-reactivity to related retroviruses. No interference was observed for samples containing added bilirubin, hemoglobin, or lipids. Based on these results, the new high-throughput design of the PetChek FeLV 15 ELISA makes it suitable for use in reference laboratory settings and maintains overall analytical performance.


Assuntos
Ensaio de Imunoadsorção Enzimática/veterinária , Vírus da Leucemia Felina/imunologia , Leucemia Felina/diagnóstico , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Animais , Gatos , Vírus da Leucemia Felina/isolamento & purificação , Leucemia Felina/virologia , Reação em Cadeia da Polimerase/veterinária , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Nano Lett ; 17(1): 200-205, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936763

RESUMO

Developing a nanoscale, integrable, and electrically pumped single mode light source is an essential step toward on-chip optical information technologies and sensors. Here, we demonstrate nanocavity enhanced electroluminescence in van der Waals heterostructures (vdWhs) at room temperature. The vertically assembled light-emitting device uses graphene/boron nitride as top and bottom tunneling contacts and monolayer WSe2 as an active light emitter. By integrating a photonic crystal cavity on top of the vdWh, we observe the electroluminescence is locally enhanced (>4 times) by the nanocavity. The emission at the cavity resonance is single mode and highly linearly polarized (84%) along the cavity mode. By applying voltage pulses, we demonstrate direct modulation of this single mode electroluminescence at a speed of ∼1 MHz, which is faster than most of the planar optoelectronics based on transition metal chalcogenides (TMDCs). Our work shows that cavity integrated vdWhs present a promising nanoscale optoelectronic platform.

15.
Nano Lett ; 16(11): 7054-7060, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27718588

RESUMO

Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter-the exciton's optical transition energy-is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe2 monolayers affixed to single-mode optical fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton's size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. These results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.

16.
Nano Lett ; 16(6): 3944-8, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27213921

RESUMO

Single defects in monolayer WSe2 have been shown to be a new class of single photon emitters and have potential applications in quantum technologies. Whereas previous work relied on optical excitation of single defects in isolated WSe2 monolayers, in this work we demonstrate electrically driven single defect light emission by using both vertical and lateral van der Waals heterostructure devices. In both device geometries, we use few layer graphene as the source and drain and hexagonal boron nitride as the dielectric spacer layers for engineered tunneling contacts. In addition, the lateral devices utilize a split back gate design to realize an electrostatically defined p-i-n junction. At low current densities and low temperatures (∼5 K), we observe narrow spectral lines in the electroluminescence (EL) whose properties are consistent with optically excited defect bound excitons. We show that the emission originates from spatially localized regions of the sample, and the EL spectrum from single defects has a doublet with the characteristic exchange splitting and linearly polarized selection rules. All are consistent with previously reported single photon-emitters in optical measurements. Our results pave the way for on-chip and electrically driven single photon sources in two-dimensional semiconductors for quantum technology applications.

17.
Nano Lett ; 16(4): 2621-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26937992

RESUMO

Many classes of two-dimensional (2D) materials have emerged as potential platforms for novel electronic and optical devices. However, their physical properties are strongly influenced by nanoscale heterogeneities in the form of edges, twin boundaries, and nucleation sites. Using combined tip-enhanced Raman scattering and photoluminescence (PL) nanospectroscopy and nanoimaging, we study the associated effects on the excitonic properties in monolayer WSe2 grown by physical vapor deposition. With ∼15 nm spatial resolution, we resolve nanoscale correlations of PL spectral intensity and shifts with crystal edges and internal twin boundaries associated with the expected exciton diffusion length. Through an active atomic force tip interaction we can control the crystal strain on the nanoscale and tune the local bandgap in reversible (up to 24 meV shift) and irreversible (up to 48 meV shift) fashion. This allows us to distinguish the effect of strain from the dominant influence of defects on the PL modification at the different structural heterogeneities. Hybrid nano-optical spectroscopy and imaging with nanomechanical strain control thus enables the systematic study of the coupling of structural and mechanical degrees of freedom to the nanoscale electronic and optical properties in layered 2D materials.

18.
Nat Commun ; 6: 8315, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26382305

RESUMO

The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton-exciton and exciton-phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here­strong many-body effects and intrinsically rapid radiative recombination­are expected to be ubiquitous in atomically thin semiconductors.

19.
J Vet Diagn Invest ; 27(4): 414-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26077545

RESUMO

The measurement of N-terminal pro-B-type natriuretic peptide (NT-proBNP), a biomarker for heart stress detectable in blood, has been shown to have clinical utility in cats with heart disease. A second-generation feline enzyme-linked immunosorbent assay (Cardiopet® proBNP, IDEXX Laboratories Inc., Westbrook, Maine) was developed to measure NT-proBNP in routine feline plasma or serum samples with improved analyte stability. Results of the analytical validation for the second-generation assay are presented. Analytic sensitivity was 10 pmol/l. Accuracy of 103.5% was determined via serial dilutions of 6 plasma samples. Coefficients of variation for intra-assay, interassay, and total precision were in the ranges of 1.6-6.3%, 4.3-8.8%, and 10.1-15.1%, respectively. Repeatability across 2 lots for both serum and plasma had an average coefficient of determination (r(2)) of 0.99 and slope of 1.11. Stability of the analyte was found to be high. In serum samples held at 4°C for 24-72 hr, the mean percent recovery from time zero was ≥99%. In serum samples held at 25°C for 24 hr, the mean percent recovery from time zero was 91.9%, and for 48 hr, 85.6%. A method comparison of the first- and second-generation assays with a clinically characterized population of cats revealed no difference in the tests' ability to differentiate levels of NT-proBNP between normal cats and cats with occult cardiomyopathy (P < 0.001). Results from our study validate that the second-generation feline Cardiopet proBNP assay can measure NT-proBNP in routine feline plasma and serum samples with accuracy and precision.


Assuntos
Biomarcadores/sangue , Gatos/sangue , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Animais , Doenças do Gato/sangue , Doenças do Gato/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária , Cardiopatias/sangue , Cardiopatias/diagnóstico , Cardiopatias/veterinária , Valores de Referência , Reprodutibilidade dos Testes
20.
Nat Nanotechnol ; 10(6): 497-502, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938571

RESUMO

Single quantum emitters (SQEs) are at the heart of quantum optics and photonic quantum-information technologies. To date, all the demonstrated solid-state single-photon sources are confined to one-dimensional (1D; ref. 3) or 3D materials. Here, we report a new class of SQEs based on excitons that are spatially localized by defects in 2D tungsten-diselenide (WSe2) monolayers. The optical emission from these SQEs shows narrow linewidths of ∼130 µeV, about two orders of magnitude smaller than those of delocalized valley excitons. Second-order correlation measurements revealed a strong photon antibunching, which unambiguously established the single-photon nature of the emission. The SQE emission shows two non-degenerate transitions, which are cross-linearly polarized. We assign this fine structure to two excitonic eigenmodes whose degeneracy is lifted by a large ∼0.71 meV coupling, probably because of the electron-hole exchange interaction in the presence of anisotropy. Magneto-optical measurements also reveal an exciton g factor of ∼8.7, several times larger than those of delocalized valley excitons. In addition to their fundamental importance, establishing new SQEs in 2D quantum materials could give rise to practical advantages in quantum-information processing, such as an efficient photon extraction and a high integratability and scalability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA