Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2400100, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797923

RESUMO

Drosophila suzukii (D. suzukii), commonly known as the spotted wing drosophila, is a highly invasive crop pest that is difficult to control using chemical insecticides. To address the urgent need for alternative and more sustainable control strategies, the sterile insect technique (SIT) is improved, which involves the release of sterilized male insects to mate with fertile conspecifics, thereby reducing the size of the pest population in the subsequent generation. The three critical aspects that influence the success of SIT programs in D. suzukii are addressed. First, an accurate and nondestructive method is established to determine the sex of individual insects based on the differential weight of male and female pupae. Second, conditions for X-ray sterilization are systematically tested and an optimal dose (90 kV/40 Gy) is identified that ensures the efficient production of sterile D. suzukii for release. Finally, the inherent thermosensitivity of D. suzukii males is exploited to develop a temperature-based sterilization technique, offering an alternative or additional SIT method for this pest. These advances will contribute to the development of a comprehensive and effective strategy for the management of D. suzukii populations, reducing their impact on agriculture and helping to safeguard crop yields.

2.
Front Plant Sci ; 14: 1120189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082341

RESUMO

Background: The non-invasive 3D-imaging and successive 3D-segmentation of plant root systems has gained interest within fundamental plant research and selectively breeding resilient crops. Currently the state of the art consists of computed tomography (CT) scans and reconstruction followed by an adequate 3D-segmentation process. Challenge: Generating an exact 3D-segmentation of the roots becomes challenging due to inhomogeneous soil composition, as well as high scale variance in the root structures themselves. Approach: (1) We address the challenge by combining deep convolutional neural networks (DCNNs) with a weakly supervised learning paradigm. Furthermore, (2) we apply a spatial pyramid pooling (SPP) layer to cope with the scale variance of roots. (3) We generate a fine-tuned training data set with a specialized sub-labeling technique. (4) Finally, to yield fast and high-quality segmentations, we propose a specialized iterative inference algorithm, which locally adapts the field of view (FoV) for the network. Experiments: We compare our segmentation results against an analytical reference algorithm for root segmentation (RootForce) on a set of roots from Cassava plants and show qualitatively that an increased amount of root voxels and root branches can be segmented. Results: Our findings show that with the proposed DCNN approach combined with the dynamic inference, much more, and especially fine, root structures can be detected than with a classical analytical reference method. Conclusion: We show that the application of the proposed DCNN approach leads to better and more robust root segmentation, especially for very small and thin roots.

3.
Front Plant Sci ; 14: 1269005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239230

RESUMO

Introduction: In the past years, it has been observed that the breeding of plants has become more challenging, as the visible difference in phenotypic data is much smaller than decades ago. With the ongoing climate change, it is necessary to breed crops that can cope with shifting climatic conditions. To select good breeding candidates for the future, phenotypic experiments can be conducted under climate-controlled conditions. Above-ground traits can be assessed with different optical sensors, but for the root growth, access to non-destructively measured traits is much more challenging. Even though MRI or CT imaging techniques have been established in the past years, they rely on an adequate infrastructure for the automatic handling of the pots as well as the controlled climate. Methods: To address both challenges simultaneously, the non-destructive imaging of plant roots combined with a highly automated and standardized mid-throughput approach, we developed a workflow and an integrated scanning facility to study root growth. Our "chamber #8" contains a climate chamber, a material flow control, an irrigation system, an X-ray system, a database for automatic data collection, and post-processing. The goals of this approach are to reduce the human interaction with the various components of the facility to a minimum on one hand, and to automate and standardize the complete process from plant care via measurements to root trait calculation on the other. The user receives standardized phenotypic traits and properties that were collected objectively. Results: The proposed holistic approach allows us to study root growth of plants in a field-like substrate non-destructively over a defined period and to calculate phenotypic traits of root architecture. For different crops, genotypic differences can be observed in response to climatic conditions which have already been applied to a wide variety of root structures, such as potatoes, cassava, or corn. Discussion: It enables breeders and scientists non-destructive access to root traits. Additionally, due to the non-destructive nature of X-ray computed tomography, the analysis of time series for root growing experiments is possible and enables the observation of kinetic traits. Furthermore, using this automation scheme for simultaneously controlled plant breeding and non-destructive testing reduces the involvement of human resources.

4.
Plant Methods ; 18(1): 76, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668530

RESUMO

BACKGROUND: In India, raw peanuts are obtained by aggregators from smallholder farms in the form of whole pods and the price is based on a manual estimation of basic peanut pod and kernel characteristics. These methods of raw produce evaluation are slow and can result in procurement irregularities. The procurement delays combined with the lack of storage facilities lead to fungal contaminations and pose a serious threat to food safety in many regions. To address this gap, we investigated whether X-ray technology could be used for the rapid assessment of the key peanut qualities that are important for price estimation. RESULTS: We generated 1752 individual peanut pod 2D X-ray projections using a computed tomography (CT) system (CTportable160.90). Out of these projections we predicted the kernel weight and shell weight, which are important indicators of the produce price. Two methods for the feature prediction were tested: (i) X-ray image transformation (XRT) and (ii) a trained convolutional neural network (CNN). The prediction power of these methods was tested against the gravimetric measurements of kernel weight and shell weight in diverse peanut pod varieties1. Both methods predicted the kernel mass with R2 > 0.93 (XRT: R2 = 0.93 and mean error estimate (MAE) = 0.17, CNN: R2 = 0.95 and MAE = 0.14). While the shell weight was predicted more accurately by CNN (R2 = 0.91, MAE = 0.09) compared to XRT (R2 = 0.78; MAE = 0.08). CONCLUSION: Our study demonstrated that the X-ray based system is a relevant technology option for the estimation of key peanut produce indicators (Figure 1). The obtained results justify further research to adapt the existing X-ray system for the rapid, accurate and objective peanut procurement process. Fast and accurate estimates of produce value are a necessary pre-requisite to avoid post-harvest losses due to fungal contamination and, at the same time, allow the fair payment to farmers. Additionally, the same technology could also assist crop improvement programs in selecting and developing peanut cultivars with enhanced economic value in a high-throughput manner by skipping the shelling of the pods completely. This study demonstrated the technical feasibility of the approach and is a first step to realize a technology-driven peanut production system transformation of the future.

5.
Plant Cell Environ ; 45(6): 1779-1795, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35229892

RESUMO

Despite the importance of storage root (SR) organs for cassava and the other root crops yield, their developmental origin is poorly understood. Here we use multiple approaches to shed light on the initial stages of root development demonstrating that SR and fibrous roots (FR) follow different rhizogenic processes. Transcriptome analysis carried out on roots collected before, during and after root bulking highlighted early and specific activation of a number of functions essential for root swelling and identified root-specific genes able to effectively discriminate emerging FR and SR. Starch and sugars start to accumulate at a higher rate in SR before they swell but only after parenchyma tissue has been produced. Finally, using non-destructive computed tomography measurements, we show that SR (but not FR) contain, since their emergence from the stem, an inner channel structure in continuity with the stem secondary xylem, indicating that SR derive from a distinct rhizogenic process compared with FR.


Assuntos
Manihot , Regulação da Expressão Gênica de Plantas , Manihot/genética , Raízes de Plantas , Amido , Xilema
6.
Front Plant Sci ; 12: 613108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859657

RESUMO

As a consequence of climate change, heat waves in combination with extended drought periods will be an increasing threat to crop yield. Therefore, breeding stress tolerant crop plants is an urgent need. Breeding for stress tolerance has benefited from large scale phenotyping, enabling non-invasive, continuous monitoring of plant growth. In case of potato, this is compromised by the fact that tubers grow belowground, making phenotyping of tuber development a challenging task. To determine the growth dynamics of tubers before, during and after stress treatment is nearly impossible with traditional destructive harvesting approaches. In contrast, X-ray Computed Tomography (CT) offers the opportunity to access belowground growth processes. In this study, potato tuber development from initiation until harvest was monitored by CT analysis for five different genotypes under stress conditions. Tuber growth was monitored three times per week via CT analysis. Stress treatment was started when all plants exhibited detectable tubers. Combined heat and drought stress was applied by increasing growth temperature for 2 weeks and simultaneously decreasing daily water supply. CT analysis revealed that tuber growth is inhibited under stress within a week and can resume after the stress has been terminated. After cessation of stress, tubers started growing again and were only slightly and insignificantly smaller than control tubers at the end of the experimental period. These growth characteristics were accompanied by corresponding changes in gene expression and activity of enzymes relevant for starch metabolism which is the driving force for tuber growth. Gene expression and activity of Sucrose Synthase (SuSy) reaffirmed the detrimental impact of the stress on starch biosynthesis. Perception of the stress treatment by the tubers was confirmed by gene expression analysis of potential stress marker genes whose applicability for potato tubers is further discussed. We established a semi-automatic imaging pipeline to analyze potato tuber delevopment in a medium thoughput (5 min per pot). The imaging pipeline presented here can be scaled up to be used in high-throughput phenotyping systems. However, the combination with automated data processing is the key to generate objective data accelerating breeding efforts to improve abiotic stress tolerance of potato genotypes.

7.
Plant Phenomics ; 2021: 8747930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644765

RESUMO

BACKGROUND: Computed X-ray tomography (CTX) is a high-end nondestructive approach for the visual assessment of root architecture in soil. Nevertheless, in order to evaluate high-resolution CTX data of root architectures, manual segmentation of the depicted root systems from large-scale volume data is currently necessary, which is both time consuming and error prone. The duration of such a segmentation is of importance, especially for time-resolved growth analysis, where several instances of a plant need to be segmented and evaluated. Specifically, in our application, the contrast between soil and root data varies due to different growth stages and watering situations at the time of scanning. Additionally, the root system itself is expanding in length and in the diameter of individual roots. OBJECTIVE: For semiautomated and robust root system segmentation from CTX data, we propose the RootForce approach, which is an extension of Frangi's "multi-scale vesselness" method and integrates a 3D local variance. It allows a precise delineation of roots with diameters down to several µm in pots with varying diameters. Additionally, RootForce is not limited to the segmentation of small below-ground organs, but is also able to handle storage roots with a diameter larger than 40 voxels. RESULTS: Using CTX volume data of full-grown bean plants as well as time-resolved (3D + time) growth studies of cassava plants, RootForce produces similar (and much faster) results compared to manual segmentation of the regarded root architectures. Furthermore, RootForce enables the user to obtain traits not possible to be calculated before, such as total root volume (V root), total root length (L root), root volume over depth, root growth angles (θ min, θ mean, and θ max), root surrounding soil density D soil, or form fraction F. Discussion. The proposed RootForce tool can provide a higher efficiency for the semiautomatic high-throughput assessment of the root architectures of different types of plants from large-scale CTX. Furthermore, for all datasets within a growth experiment, only a single set of parameters is needed. Thus, the proposed tool can be used for a wide range of growth experiments in the field of plant phenotyping.

8.
Phys Rev Lett ; 125(4): 048001, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794800

RESUMO

When dense granular matter is sheared, the strain is often localized in shear bands. After some initial transient these shear bands become stationary. Here, we introduce a setup that periodically creates horizontally aligned shear bands which then migrate upward through the sample. Using x-ray radiography we demonstrate that this effect is caused by dilatancy, the reduction in volume fraction occurring in sheared dense granular media. Further on, we argue that these migrating shear bands are responsible for the previously reported periodic inflating and collapsing of the material.

9.
Plant Methods ; 16: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082405

RESUMO

BACKGROUND: Improving abiotic stress tolerance in wheat requires large scale screening of yield components such as seed weight, seed number and single seed weight, all of which is very laborious, and a detailed analysis of seed morphology is time-consuming and visually often impossible. Computed tomography offers the opportunity for much faster and more accurate assessment of yield components. RESULTS: An X-ray computed tomographic analysis was carried out on 203 very diverse wheat accessions which have been exposed to either drought or combined drought and heat stress. Results demonstrated that our computed tomography pipeline was capable of evaluating grain set with an accuracy of 95-99%. Most accessions exposed to combined drought and heat stress developed smaller, shrivelled seeds with an increased seed surface. As expected, seed weight and seed number per ear as well as single seed size were significantly reduced under combined drought and heat compared to drought alone. Seed weight along the ear was significantly reduced at the top and bottom of the wheat spike. CONCLUSIONS: We were able to establish a pipeline with a higher throughput with scanning times of 7 min per ear and accuracy than previous pipelines predicting a set of agronomical important seed traits and to visualize even more complex traits such as seed deformations. The pipeline presented here could be scaled up to use for high throughput, high resolution phenotyping of tens of thousands of heads, greatly accelerating breeding efforts to improve abiotic stress tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA