Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 25169-25180, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695741

RESUMO

Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications. Here, we present screen-printed graphene electrodes that are processed with thermal annealing to achieve high surface area and electrical conductivity for sensitive biodetection via electrochemical impedance spectroscopy. As a proof-of-concept, this biosensing platform is utilized for electrochemical detection of SARS-CoV-2. To ensure reliable specificity in the presence of multiple variants, biolayer interferometry (BLI) is used as a label-free and dynamic screening method to identify optimal antibodies for concurrent affinity to the Spike S1 proteins of Delta, Omicron, and Wild Type SARS-CoV-2 variants while maintaining low affinity to competing pathogens such as Influenza H1N1. The BLI-identified antibodies are robustly bound to the graphene electrode surface via oxygen moieties that are introduced during the thermal annealing process. The resulting electrochemical immunosensors achieve superior metrics including rapid detection (55 s readout following 15 min of incubation), low limits of detection (approaching 500 ag/mL for the Omicron variant), and high selectivity toward multiple variants. Importantly, the sensors perform well on clinical saliva samples detecting as few as 103 copies/mL of SARS-CoV-2 Omicron, following CDC protocols. The combination of the screen-printed graphene sensing platform and effective antibody selection using BLI can be generalized to a wide range of point-of-care immunosensors.


Assuntos
Técnicas Biossensoriais , Grafite , Interferometria , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Grafite/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Técnicas Biossensoriais/métodos , Humanos , Interferometria/instrumentação , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/diagnóstico , COVID-19/virologia , Eletrodos , Técnicas Eletroquímicas/métodos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/imunologia
2.
ACS Appl Mater Interfaces ; 15(32): 38201-38213, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37526921

RESUMO

Wearable biosensors promise real-time measurements of chemicals in human sweat, with the potential for dramatic improvements in medical diagnostics and athletic performance through continuous metabolite and electrolyte monitoring. However, sweat sensing is still in its infancy, and questions remain about whether sweat can be used for medical purposes. Wearable sensors are focused on proof-of-concept designs that are not scalable for multisubject trials, which could elucidate the utility of sweat sensing for health monitoring. Moreover, many wearable sensors do not include the microfluidics necessary to protect and channel consistent and clean sweat volumes to the sensor surface or are not designed to be disposable to prevent sensor biofouling and inaccuracies due to repeated use. Hence, there is a need to produce low-cost and single-use wearable sensors with integrated microfluidics to ensure reliable sweat sensing. Herein, we demonstrate the convergence of laser-induced graphene (LIG) based sensors with soft tape polymeric microfluidics to quantify both sweat metabolites (glucose and lactate) and electrolytes (sodium) for potential hydration and fatigue monitoring. Distinct LIG-electrodes were functionalized with glucose oxidase and lactate oxidase for selective sensing of glucose and lactate across physiological ranges found in sweat with sensitivities of 26.2 and 2.47 × 10-3 µA mM-1 cm-2, detection limits of 8 and 220 µM, and linear response ranges of 0-1 mM and 0-32 mM, respectively. LIG-electrodes functionalized with a sodium-ion-selective membrane displayed Nernstian sensitivity of 58.8 mV decade-1 and a linear response over the physiological range in sweat (10-100 mM). The sensors were tested in a simulated sweating skin microfluidic system and on-body during cycling tests in a multisubject trial. Results demonstrate the utility of LIG integrated with microfluidics for real-time, continuous measurements of biological analytes in sweat and help pave the way for the development of personalized wearable diagnostic tools.


Assuntos
Técnicas Biossensoriais , Grafite , Dispositivos Eletrônicos Vestíveis , Humanos , Suor , Sudorese , Microfluídica , Técnicas Biossensoriais/métodos , Sódio , Ácido Láctico , Polímeros , Glucose
3.
ACS Appl Mater Interfaces ; 15(2): 3325-3335, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36608034

RESUMO

Aerosol jet printing is a noncontact, digital, additive manufacturing technique compatible with a wide variety of functional materials. Although promising, development of new materials and devices using this technique remains hindered by limited rational ink formulation, with most recent studies focused on device demonstration rather than foundational process science. In the present work, a systematic approach to formulating a polymer-stabilized graphene ink is reported, which considers the effect of solvent composition on dispersion, rheology, wetting, drying, and phase separation characteristics that drive process outcomes. It was found that a four-component solvent mixture composed of isobutyl acetate, diglyme, dihydrolevoglucosenone, and glycerol supported efficient ink atomization and controlled in-line drying to reduce overspray and wetting instabilities while maintaining high resolution and electrical conductivity, thus overcoming a trade-off in deposition rate and resolution common to aerosol jet printing. Biochemical sensors were printed for amperometric detection of the pesticide parathion, exhibiting a detection limit of 732 nM and a sensitivity of 34 nA µM-1, demonstrating the viability of this graphene ink for fabricating functional electronic devices.

4.
Mikrochim Acta ; 190(1): 43, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595104

RESUMO

Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photometric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec-1, a detection limit of 0.3 ± 0.1 mg L-1 (mean ± standard deviation), and a broad linear sensing range from 10-5 to 10-1 M, which was significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg L-1 in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.


Assuntos
Grafite , Eletrodos Seletivos de Íons , Humanos , Grafite/química , Nitritos , Água , Lasers
5.
Glob Chall ; 6(9): 2200057, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176938

RESUMO

Glyphosate is a globally applied herbicide yet it has been relatively undetectable in-field samples outside of gold-standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers' urine, surface waters and crop residues. Rapid, on-site detection of glyphosate is hindered by lack of field-deployable and easy-to-use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum-decorated laser-induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10-260 µ m, detection limit of 3.03 µ m, and sensitivity of 0.991 nA µ m -1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4-dichlorophenoxyacetic acid, dicamba, parathion-methyl, paraoxon-methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct-write, and selective method of glyphosate detection for herbicide mapping and food analysis.

6.
2d Mater ; 9(3)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35785019

RESUMO

Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world-wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing (AJP) to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 Spike Receptor-Binding Domain (RBD) in saliva samples acquired non-invasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg/mL for Spike RBD and 110.38 ± 9.00 pg/mL for Spike S1) as well as fast response time (~30 mins), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng/mL and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests.

7.
Mikrochim Acta ; 189(3): 122, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218439

RESUMO

Current solid-contact ion-selective electrodes (ISEs) suffer from signal-to-noise drift and short lifespans partly due to water uptake and the development of an aqueous layer between the transducer and ion-selective membrane. To address these challenges, we report on a nitrate ISE based on hydrophobic laser-induced graphene (LIG) coated with a poly(vinyl) chloride-based nitrate selective membrane. The hydrophobic LIG was created using a polyimide substrate and a double lasing process under ambient conditions (air at 23.0 ± 1.0 °C) that resulted in a static water contact angle of 135.5 ± 0.7° (mean ± standard deviation) in wettability testing. The LIG-ISE displayed a Nernstian response of - 58.17 ± 4.21 mV dec-1 and a limit-of-detection (LOD) of 6.01 ± 1.44 µM. Constant current chronopotentiometry and a water layer test were used to evaluate the potential (emf) signal stability with similar performance to previously published work with graphene-based ISEs. Using a portable potentiostat, the sensor displayed comparable (p > 0.05) results to a US Environmental Protection Agency (EPA)-accepted analytical method when analyzing water samples collected from two lakes in Ames, IA. The sensors were stored in surface water samples for 5 weeks and displayed nonsignificant difference in performance (LOD and sensitivity). These results, combined with a rapid and low-cost fabrication technique, make the development of hydrophobic LIG-ISEs appealing for a wide range of long-term in situ surface water quality applications.

8.
ACS Nano ; 16(1): 15-28, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34812606

RESUMO

The integration of microfluidics and electrochemical cells is at the forefront of emerging sensors and energy systems; however, a fabrication scheme that can create both the microfluidics and electrochemical cells in a scalable fashion is still lacking. We present a one-step, mask-free process to create, pattern, and tune laser-induced graphene (LIG) with a ubiquitous CO2 laser. The laser parameters are adjusted to create LIG with different electrical conductivity, surface morphology, and surface wettability without the need for postchemical modification. Such definitive control over material properties enables the creation of LIG-based integrated open microfluidics and electrochemical sensors that are capable of dividing a single water sample along four multifurcating paths to three ion selective electrodes (ISEs) for potassium (K+), nitrate (NO3-), and ammonium (NH4+) monitoring and to an enzymatic pesticide sensor for organophosphate pesticide (parathion) monitoring. The ISEs displayed near-Nernstian sensitivities and low limits of detection (LODs) (10-5.01 M, 10-5.07 M, and 10-4.89 M for the K+, NO3-, and NH4+ ISEs, respectively) while the pesticide sensor exhibited the lowest LOD (15.4 pM) for an electrochemical parathion sensor to date. LIG was also specifically patterned and tuned to create a high-performance electrochemical micro supercapacitor (MSC) capable of improving the power density by 2 orders of magnitude compared to a Li-based thin-film battery and the energy density by 3 orders of magnitude compared to a commercial electrolytic capacitor. Hence, this tunable fabrication approach to LIG is expected to enable a wide range of real-time, point-of-use health and environmental sensors as well as energy storage/harvesting modules.


Assuntos
Grafite , Paration , Praguicidas , Grafite/química , Microfluídica , Eletrodos , Molhabilidade , Lasers , Condutividade Elétrica , Íons/química
9.
Anal Bioanal Chem ; 413(25): 6201-6212, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34468795

RESUMO

Laser-induced graphene (LIG) has shown to be a scalable manufacturing route to create graphene electrodes that overcome the expense associated with conventional graphene electrode fabrication. Herein, we expand upon initial LIG reports by functionalizing the LIG with metallic nanoparticles for ion sensing, pesticide monitoring, and water splitting. The LIG electrodes were converted into ion-selective sensors by functionalization with poly(vinyl chloride)-based membranes containing K+ and H+ ionophores. These ion-selective sensors exhibited a rapid response time (10-15 s), near-Nernstian sensitivity (53.0 mV/dec for the K+ sensor and - 56.6 mV/pH for the pH sensor), and long storage stability for 40 days, and were capable of ion monitoring in artificial urine. The pesticide biosensors were created by functionalizing the LIG electrodes with the enzyme horseradish peroxidase and displayed a high sensitivity to atrazine (28.9 nA/µM) with negligible inference from other common herbicides (glyphosate, dicamba, and 2,4-dichlorophenoxyacetic acid). Finally, the LIG electrodes also exhibited a small overpotential for hydrogen evolution reaction and oxygen evolution reaction. The oxygen evolution reaction tests yielded overpotentials of 448 mV and 995 mV for 10 mA/cm2 and 100 mA/cm2, respectively. The hydrogen evolution reaction tests yielded 35 mV and 281 mV for the corresponding current densities. Such a versatile LIG platform paves the way for simple, efficient electrochemical sensing and energy harvesting applications.

10.
ACS Sens ; 6(8): 3063-3071, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34370948

RESUMO

Neonicotinoids are the fastest-growing insecticide accounting for over 25% of the global pesticide market and are capable of controlling a range of pests that damage croplands, home yards/gardens, and golf course greens. However, widespread use has led to nontarget organism decline in pollinators, insects, and birds, while chronic, sublethal effects on humans are still largely unknown. Therefore, there is a need to understand how prevalent neonicotinoids are in the environment as there are currently no commercially available field-deployable sensors capable of measuring neonicotinoid concentrations in surface waters. Herein, we report the first example of a laser-induced graphene (LIG) platform that utilizes electrochemical sensing for neonicotinoid detection. These graphene-based sensors are created through a scalable direct-write laser fabrication process that converts polyimide into LIG, which eliminates the need for chemical synthesis of graphene, ink formulation, masks, stencils, pattern rolls, and postprint annealing commonly associated with other printed graphene sensors. The LIG electrodes were capable of monitoring four major neonicotinoids (CLO, IMD, TMX, and DNT) with low detection limits (CLO, 823 nM; IMD, 384 nM; TMX, 338 nM; and DNT, 682 nM) and a rapid response time (∼10 s) using square-wave voltammetry without chemical/biological functionalization. Interference testing exhibited negligible responses from widely used pesticides including the broad-leaf insecticides parathion, paraoxon, and fipronil, as well as systemic herbicides glyphosate (roundup), atrazine, dicamba, and 2,4-dichlorophenoxyacetic acid. These scalable, graphene-based sensors have the potential for wide-scale mapping of neonicotinoids in watersheds and potential use in numerous electrochemical sensor devices.


Assuntos
Grafite , Inseticidas , Eletrodos , Humanos , Inseticidas/análise , Lasers , Neonicotinoides
11.
Nanoscale Horiz ; 6(1): 24-32, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33165477

RESUMO

Open microfluidics have emerged as a low-cost, pumpless alternative strategy to conventional microfluidics for delivery of fluid for a wide variety of applications including rapid biochemical analysis and medical diagnosis. However, creating open microfluidics by tuning the wettability of surfaces typically requires sophisticated cleanroom processes that are unamenable to scalable manufacturing. Herein, we present a simple approach to develop open microfluidic platforms by manipulating the surface wettability of spin-coated graphene ink films on flexible polyethylene terephthalate via laser-controlled patterning. Wedge-shaped hydrophilic tracks surrounded by superhydrophobic walls are created within the graphene films by scribing micron-sized grooves into the graphene with a CO2 laser. This scribing process is used to make superhydrophobic walls (water contact angle ∼160°) that delineate hydrophilic tracks (created through an oxygen plasma pretreatment) on the graphene for fluid transport. These all-graphene open microfluidic tracks are capable of transporting liquid droplets with a velocity of 20 mm s-1 on a level surface and uphill at elevation angles of 7° as well as transporting fluid in bifurcating cross and tree branches. The all-graphene open microfluidic manufacturing technique is rapid and amenable to scalable manufacturing, and consequently offers an alternative pumpless strategy to conventional microfluidics and creates possibilities for diverse applications in fluid transport.

12.
ACS Sens ; 5(7): 1900-1911, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32348124

RESUMO

Food-borne illnesses are a growing concern for the food industry and consumers, with millions of cases reported every year. Consequently, there is a critical need to develop rapid, sensitive, and inexpensive techniques for pathogen detection in order to mitigate this problem. However, current pathogen detection strategies mainly include time-consuming laboratory methods and highly trained personnel. Electrochemical in-field biosensors offer a rapid, low-cost alternative to laboratory techniques, but the electrodes used in these biosensors require expensive nanomaterials to increase their sensitivity, such as noble metals (e.g., platinum, gold) or carbon nanomaterials (e.g., carbon nanotubes, or graphene). Herein, we report the fabrication of a highly sensitive and label-free laser-induced graphene (LIG) electrode that is subsequently functionalized with antibodies to electrochemically quantify the food-borne pathogen Salmonella enterica serovar Typhimurium. The LIG electrodes were produced by laser induction on the polyimide film in ambient conditions and, hence, circumvent the need for high-temperature, vacuum environment, and metal seed catalysts commonly associated with graphene-based electrodes fabricated via chemical vapor deposition processes. After functionalization with Salmonella antibodies, the LIG biosensors were able to detect live Salmonella in chicken broth across a wide linear range (25 to 105 CFU mL-1) and with a low detection limit (13 ± 7 CFU mL-1; n = 3, mean ± standard deviation). These results were acquired with an average response time of 22 min without the need for sample preconcentration or redox labeling techniques. Moreover, these LIG immunosensors displayed high selectivity as demonstrated by nonsignificant response to other bacteria strains. These results demonstrate how LIG-based electrodes can be used for electrochemical immunosensing in general and, more specifically, could be used as a viable option for rapid and low-cost pathogen detection in food processing facilities before contaminated foods reach the consumer.


Assuntos
Técnicas Biossensoriais , Grafite , Imunoensaio , Nanotubos de Carbono , Salmonella enterica , Animais , Galinhas , Técnicas Eletroquímicas , Lasers , Limite de Detecção
13.
ACS Appl Mater Interfaces ; 12(7): 8592-8603, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32040290

RESUMO

Graphene-based inks are becoming increasingly attractive for printing low-cost and flexible electrical circuits due to their high electrical conductivity, biocompatibility, and manufacturing scalability. Conventional graphene printing techniques, such as screen and inkjet printing, are limited by stringent ink viscosity requirements properties and large as-printed line width that impedes the performance of printed biosensors. Here, we report an aerosol-jet-printed (AJP) graphene-based immunosensor capable of monitoring two distinct cytokines: interferon gamma (IFN-γ) and interleukin 10 (IL-10). Interdigitated electrodes (IDEs) with 40 µm finger widths were printed from graphene-nitrocellulose ink on a polyimide substrate. The IDEs were annealed in CO2 to introduce reactive oxygen species on the graphene surface that act as chemical handles to covalently link IFN-γ and IL-10 antibodies to the graphene surfaces. The resultant AJP electrochemical immunosensors are capable of monitoring cytokines in serum with wide sensing range (IFN-γ: 0.1-5 ng/mL; IL-10: 0.1-2 ng/mL), low detection limit (IFN-γ: 25 pg/ml and IL-10: 46 pg/ml) and high selectivity (antibodies exhibited minimal cross-reactivity with each other and IL-6) without the need for sample prelabeling or preconcentration. Moreover, these biosensors are mechanically flexible with minimal change in signal output after 250 bending cycles over a high curvature (Φ = 5 mm). Hence, this technology could be applied to numerous electrochemical applications that require low-cost electroactive circuits that are disposable and/or flexible.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Grafite/química , Interferon gama/sangue , Interleucina-10/sangue , Nanoestruturas/química , Impressão Tridimensional/instrumentação , Aerossóis/química , Animais , Anticorpos/imunologia , Técnicas Biossensoriais/instrumentação , Dióxido de Carbono/química , Bovinos , Colódio/química , Condutividade Elétrica , Técnicas Eletroquímicas/instrumentação , Eletrodos , Imidas/química , Tinta , Interferon gama/imunologia , Interleucina-10/imunologia , Limite de Detecção , Microscopia de Força Atômica , Microscopia Confocal , Nanoestruturas/ultraestrutura , Polímeros , Espécies Reativas de Oxigênio/química , Análise Espectral , Análise Espectral Raman , Propriedades de Superfície
14.
Sci Rep ; 9(1): 10595, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332270

RESUMO

In this study, a novel method based on the transfer of graphene patterns from a rigid or flexible substrate onto a polymeric film surface via solvent casting was developed. The method involves the creation of predetermined graphene patterns on the substrate, casting a polymer solution, and directly transferring the graphene patterns from the substrate to the surface of the target polymer film via a peeling-off method. The feature sizes of the graphene patterns on the final film can vary from a few micrometers (as low as 5 µm) to few millimeters range. This process, applied at room temperature, eliminates the need for harsh post-processing techniques and enables creation of conductive graphene circuits (sheet resistance: ~0.2 kΩ/sq) with high stability (stable after 100 bending and 24 h washing cycles) on various polymeric flexible substrates. Moreover, this approach allows precise control of the substrate properties such as composition, biodegradability, 3D microstructure, pore size, porosity and mechanical properties using different film formation techniques. This approach can also be used to fabricate flexible biointerfaces to control stem cell behavior, such as differentiation and alignment. Overall, this promising approach provides a facile and low-cost method for the fabrication of flexible and stretchable electronic circuits.

15.
Mikrochim Acta ; 186(8): 533, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31309292

RESUMO

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers' method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made from both materials displayed excellent H2O2 sensing capability compared to screen-printed carbon electrodes. Laminates made from expanded graphite and treated with platinum, detected H2O2 at a working potential of 0.3 V (vs. Ag/AgCl [0.1 M KCl]) with a 1.91 µM detection limit and sensitivity of 64 nA·µM-1·cm-2. Electrodes made from platinum treated nanoplatelet graphene had a H2O2 detection limit of 1.98 µM (at 0.3 V), and a sensitivity of 16.5 nA·µM-1·cm-2. Both types of laminate electrodes were also tested as glucose sensors via immobilization of the enzyme glucose oxidase. The expanded nanographene material exhibited a wide analytical range for glucose (3.7 µM to 9.9 mM) and a detection limit of 1.2 µM. The sensing range of laminates made from expanded graphite was slightly reduced (9.8 µM to 9.9 mM) and the detection limit for glucose was higher (18.5 µM). When tested on flexible substrates, the expanded graphite laminates demonstrated excellent adhesion and durability during testing. These properties make the electrodes adaptable to a variety of tests for field-based or wearable sensing applications. Graphical abstract Expanded graphite (eGR) and expanded nanoplatelet graphene (nGN) were chemically exfoliated, thermally expanded, and manually stamped into flexible multi-layer graphene laminate electrodes. Hydrogen peroxide amperometric testing of eGR laminates compared to nGN laminates and a screen printed carbon (SPC) electrode.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Grafite/química , Peróxido de Hidrogênio/análise , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Limite de Detecção , Nanopartículas Metálicas/química , Platina/química , Impressão Tridimensional
16.
Nanoscale ; 11(12): 5222-5230, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30644953

RESUMO

Solution phase printing of nanomaterials is becoming increasingly important for the creation of scalable flexible electronics including those associated with biomedical and energy harvesting applications. However, the use of solution-phase printed thermoelectric energy generators (TEGs) has been minimally explored. Herein we report a highly flexible inkjet-printed TEG. Bismuth telluride (Bi2Te3) and bismuth antimony telluride (Bi0.5Sb1.5Te3) nanowires (NWs) are inkjet printed onto polyimide to form n-type and p-type legs for the TEGs. A post-print thermal annealing process is used to increase the thermoelectric performance of the printed NWs while eutectic gallium-indium (EGaIn) liquid metal contacts electrically connect the TEG legs in series. Annealing conditions for the combination of p/n legs are examined to maximize the thermoelectric efficiency of the TEG prototype. The maximum power factor was found to be 180 µW m-1 K-2 and 110 µW m-1 K-2 for the Bi2Te3 and Bi0.5Sb1.5Te3 nanowires respectively. A maximum power for the fully printed TEG device measured 127 nW at a 32.5 K temperature difference. The performance of the TEG device does not diminish even after multiple bending experiments (up to 50 times) around a tight radius of curvature (rod-dia. 11 mm). Hence this inkjet-printed flexible TEG is a step towards a fully functional wearable TEG device.

17.
ACS Appl Mater Interfaces ; 10(45): 39124-39133, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30284450

RESUMO

Flexible graphene electronics are rapidly gaining interest, but their widespread implementation has been impeded by challenges with ink preparation, ink printing, and postprint annealing processes. Laser-induced graphene (LIG) promises a facile alternative by creating flexible graphene electronics on polyimide substrates through the one-step laser writing fabrication method. Herein, we demonstrate the use of LIG, created with a low-cost UV laser, for electrochemical ion-selective sensing of plant-available nitrogen (i.e., both ammonium and nitrate ions: NH4+ and NO3-) in soil samples. The laser used to create the LIG was operated at distinct pulse widths (10, 20, 30, 40, and 50 ms) to maximize the LIG electrochemical reactivity. Results illustrated that a laser pulse width of 20 ms led to a high percentage of sp2 carbon (77%) and optimal peak oxidation current of 120 µA during cyclic voltammetry of ferro/ferricyanide. Therefore, LIG electrodes created with a 20 ms pulse width were consequently functionalized with distinct ionophores specific to NH4+ (nonactin) or NO3- (tridodecylmethylammonium nitrate) within poly(vinyl chloride)-based membranes to create distinct solid contact ion-selective electrodes (SC-ISEs) for NH4+ and NO3- ion sensing, respectively. The LIG SC-ISEs displayed near Nernstian sensitivities of 51.7 ± 7.8 mV/dec (NH4+) and -54.8 ± 2.5 mV/dec (NO3-), detection limits of 28.2 ± 25.0 µM (NH4+) and 20.6 ± 14.8 µM (NO3-), low long-term drift of 0.93 mV/h (NH4+ sensors) and -5.3 µV/h (NO3- sensors), and linear sensing ranges of 10-5-10-1 M for both sensors. Moreover, soil slurry sensing was performed, and recovery percentages of 96% and 95% were obtained for added NH4+ and NO3-, respectively. These results, combined with a facile fabrication that does not require metallic nanoparticle decoration, make these LIG electrochemical sensors appealing for a wide range of in-field or point-of-service applications for soil health management.

18.
ACS Appl Mater Interfaces ; 10(34): 28351-28360, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30067019

RESUMO

Freestanding, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 µm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating at a low potential of -0.2 V vs Ag/AgCl. As a comparison, enzymatic VACNT sensors with platinum nano-urchins were functionalized with glucose oxidase by covalent binding (1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide/ N-hydroxysuccinimide) or by polymer entrapment [poly(3,4-ethylene-dioxythiophene)] and operated in phosphate buffered saline. With normalization by the overall cross-sectional area of the flow (0.713 cm2), the sensitivity of the MV, enzyme-in-solution, and covalent sensors were 45.93, 18.77, and 1.815 mA cm-2 mM-1, respectively. Corresponding limits of detection were 100, 194, and 311 nM glucose. The linear sensing ranges for the sensors were 250 nM to 200 µM glucose for the MV sensor, 500 nM to 200 µM glucose for the enzyme-in-solution sensor, and 1 µM to 6 mM glucose for the covalent sensor. The flow cell and sensor cross-sectional area were scaled down (0.020 cm2) to enable detection from 200 µL of glucose with MV by flow injection analysis. The sensitivity of the small MV sensor was 5.002 mA cm-2 mM-1, with a limit of detection of 360 nM glucose and a linear range up to at least 150 µM glucose. The small MV sensor has the potential to measure glucose levels found in 200 µL of saliva.


Assuntos
Nanotubos de Carbono , Técnicas Biossensoriais , Glucose , Glucose Oxidase , Paraquat , Platina
19.
Biosens Bioelectron ; 117: 68-74, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29886188

RESUMO

Vertically aligned carbon nanotube array (VANTA) coatings have recently garnered significant attention due in part to their unique material properties including light absorption, chemical inertness, and electrical conductivity. Herein we report the first use of VANTAs grown via chemical vapor deposition in a 2D interdigitated electrode (IDE) footprint with a high height-to-width aspect ratio (3:1 or 75:25 µm). The VANTA-IDEs were functionalized with an antibody (Ab) specific to the human cancerous inhibitor PP2A (CIP2A)-an oncoprotein that is associated with a variety of malignancies such as oral, breast, and multiple myeloma cancers. The resultant label-free immunosensor was capable of detecting CIP2A across a wide linear sensing range (1-100 pg/mL) with a detection limit of 0.24 pg/mL within saliva supernatant-a range that is more sensitive than the corresponding CIP2A enzyme linked immunosorbent assay (ELISA). These results help pave the way for rapid cancer screening tests at the point-of-care (POC) such as for the early-stage diagnosis of oral cancer at a dentist's office.


Assuntos
Autoantígenos/metabolismo , Técnicas Biossensoriais/métodos , Detecção Precoce de Câncer/métodos , Proteínas de Membrana/metabolismo , Neoplasias Bucais/diagnóstico , Nanotubos de Carbono/química , Anticorpos/metabolismo , Técnicas Biossensoriais/normas , Eletrodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito
20.
Adv Healthc Mater ; 7(14): e1701046, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29656561

RESUMO

Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.


Assuntos
Células-Tronco Adultas/citologia , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Células-Tronco Adultas/fisiologia , Animais , Materiais Biocompatíveis/química , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Humanos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA