Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Clin Pathol ; 158(2): 270-276, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35460401

RESUMO

OBJECTIVES: The US Food and Drug Administration (FDA)-approved CELLSEARCH assay (Menarini Silicon Biosystems) for circulating tumor cells (CTCs) relies on expression of an epithelial cell adhesion molecule to enrich for CTCs. We sought to validate a CTC assay (RareCyte) for clinical use that instead collects a buffy coat preparation enriched for CTCs. METHODS: Normal peripheral blood specimens spiked with cultured breast and prostate cancer cells and 47 clinical samples were used to validate assay performance. Specimens were enriched for buffy coat cells and applied onto 8 glass slides. The slides were immunofluorescently stained and imaged by automated microscopy and computer-aided image analysis. RESULTS: The assay was 100% specific for detecting spiked tumor cells. For samples spiked with 25, 50, and 125 cells, the percentage coefficients of variation were 42%, 21%, and 3.7%, respectively. Linearity studies demonstrated a slope of 0.99, an intercept of 1.6, and R2 of 0.96. Recoveries at the 25-, 50-, and 125-cell levels were 92%, 111%, and 100%, respectively. Clinical samples run on both CELLSEARCH and RareCyte correlated with an R2 of 0.8 after log-transformation and demonstrated 87.5% concordance using the CELLSEARCH criteria for predicting adverse outcomes. CONCLUSIONS: The RareCyte CTC assay has comparable performance to the FDA-cleared method and is ready for further clinical validation studies.


Assuntos
Células Neoplásicas Circulantes , Neoplasias da Próstata , Biomarcadores Tumorais/metabolismo , Contagem de Células , Centrifugação , Humanos , Masculino , Microscopia de Fluorescência , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia
2.
BMC Cancer ; 15: 360, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25944336

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte®--CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. METHODS: All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. RESULTS: AccuCyte--CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. CONCLUSION: The AccuCyte--CyteFinder system is a comprehensive and sensitive platform for identification and characterization of CTCs that has been applied to the assessment of CTCs in cancer patient samples as well as the isolation of single cells for genomic analysis. It thus enables accurate non-invasive monitoring of CTCs and evolving cancer biology for personalized, molecularly-guided cancer treatment.


Assuntos
Separação Celular/métodos , Células Neoplásicas Circulantes , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Neoplasias da Próstata/patologia , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA