Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
QJM ; 109(6): 367-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26428335

RESUMO

Glucose and glutamine metabolism in cancer cells are markedly elevated relative to non-transformed normal cells. This metabolic reprogramming enables the production of adenosine triphosphate and the anabolic precursors needed for survival, growth and motility. The recent observations that mutant oncogenic proteins and the loss of tumor suppressors activate key metabolic enzymes suggest that selective inhibition of these enzymes may yield effective cancer therapeutics with acceptable toxicities. In support of this concept, pre-clinical studies of small molecule antagonists of several metabolic enzymes in tumor-bearing mice have demonstrated reasonable therapeutic indices. We will review the rationale for targeting metabolic enzymes as a strategy to treat cancer and will detail the results of several recent clinical trials of metabolic inhibitors in advanced cancer patients.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular/tendências , Neoplasias/enzimologia , Fosforilação Oxidativa/efeitos dos fármacos , Microambiente Tumoral
2.
Cell Death Dis ; 5: e1337, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25032860

RESUMO

The control of glucose metabolism and the cell cycle must be coordinated in order to guarantee sufficient ATP and anabolic substrates at distinct phases of the cell cycle. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) are well established regulators of glucose metabolism via their synthesis of fructose-2,6-bisphosphate (F2,6BP), a potent allosteric activator of 6-phosphofructo-1-kinase (Pfk-1). PFKFB3 is overexpressed in human cancers, regulated by HIF-1α, Akt and PTEN, and required for the survival and growth of multiple cancer types. Although most functional studies of the role of PFKFB3 in cancer progression have invoked its well-recognized function in the regulation of glycolysis, recent observations have established that PFKFB3 also traffics to the nucleus and that its product, F2,6BP, activates cyclin-dependent kinases (Cdks). In particular, F2,6BP stimulates the Cdk-mediated phosphorylation of the Cip/Kip protein p27 (threonine 187), which in turn results in p27's ubiquitination and proteasomal degradation. As p27 is a potent suppressor of the G1/S transition and activator of apoptosis, we hypothesized that the known requirement of PFKFB3 for cell cycle progression and prevention of apoptosis may be partly due to the ability of F2,6BP to activate Cdks. In this study, we demonstrate that siRNA silencing of endogenous PFKFB3 inhibits Cdk1 activity, which in turn stabilizes p27 protein levels causing cell cycle arrest at G1/S and increased apoptosis in HeLa cells. Importantly, we demonstrate that the increase in apoptosis and suppression of the G1/S transition caused by siRNA silencing of PFKFB3 expression is reversed by co-siRNA silencing of p27. Taken together with prior publications, these observations support a model whereby PFKFB3 and F2,6BP function not only as regulators of Pfk-1 but also of Cdk1 activity, and therefore serve to couple glucose metabolism with cell proliferation and survival in transformed cells.


Assuntos
Apoptose , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fosfofrutoquinase-2/metabolismo , Proteína Quinase CDC2/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Regulação para Baixo , Humanos , Fosfofrutoquinase-2/genética , Fosforilação
3.
Oncogene ; 33(5): 556-66, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23353822

RESUMO

Retinoblastoma (Rb) protein is a tumor suppressor that is dysregulated in a majority of human cancers. Rb functions to inhibit cell cycle progression in part by directly disabling the E2F family of cell cycle-promoting transcription factors. Because the de novo synthesis of multiple glutamine-derived anabolic precursors is required for cell cycle progression, we hypothesized that Rb also may directly regulate proteins involved in glutamine metabolism. We examined glutamine metabolism in mouse embryonic fibroblasts (MEFs) isolated from mice that have triple knock-outs (TKO) of all three Rb family members (Rb-1, Rbl1 and Rbl2) and found that loss of global Rb function caused a marked increase in (13)C-glutamine uptake and incorporation into glutamate and tricarboxylic acid cycle (TCA) intermediates in part via upregulated expression of the glutamine transporter ASCT2 and the activity of glutaminase 1 (GLS1). The Rb-controlled transcription factor E2F-3 altered glutamine uptake by direct regulation of ASCT2 mRNA and protein expression, and E2F-3 was observed to associate with the ASCT2 promoter. We next examined the functional consequences of the observed increase in glutamine uptake and utilization and found that glutamine exposure potently increased oxygen consumption, whereas glutamine deprivation selectively decreased ATP concentration in the Rb TKO MEFs but not the wild-type (WT) MEFs. In addition, TKO MEFs exhibited elevated production of glutathione from exogenous glutamine and had increased expression of gamma-glutamylcysteine ligase relative to WT MEFs. Importantly, this metabolic shift towards glutamine utilization was required for the proliferation of Rb TKO MEFs but not for the proliferation of the WT MEFs. Last, addition of the TCA cycle intermediate α-ketoglutarate to the Rb TKO MEFs reversed the inhibitory effects of glutamine deprivation on ATP, GSH levels and viability. Taken together, these studies demonstrate that the Rb/E2F cascade directly regulates a major energetic and anabolic pathway that is required for neoplastic growth.


Assuntos
Fator de Transcrição E2F3/metabolismo , Glutamina/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo , Trifosfato de Adenosina/biossíntese , Sistema ASC de Transporte de Aminoácidos/biossíntese , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico/genética , Ciclo Celular , Proliferação de Células , Células Cultivadas , Fator de Transcrição E2F3/biossíntese , Fibroblastos , Glutamato-Cisteína Ligase/biossíntese , Glutaminase/biossíntese , Glutaminase/genética , Glutaminase/metabolismo , Glutationa/biossíntese , Ácidos Cetoglutáricos/metabolismo , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Oxigênio/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/genética , Proteína p130 Retinoblastoma-Like/genética
4.
Oncogene ; 30(30): 3370-80, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21423211

RESUMO

Choline kinase-α expression and activity are increased in multiple human neoplasms as a result of growth factor stimulation and activation of cancer-related signaling pathways. The product of choline kinase-α, phosphocholine, serves as an essential metabolic reservoir for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the production of lipid second messengers. Using in silico screening for small molecules that may interact with the choline kinase-α substrate binding domain, we identified a novel competitive inhibitor, N-(3,5-dimethylphenyl)-2-[[5-(4-ethylphenyl)-1H-1,2,4-triazol-3-yl]sulfanyl] acetamide (termed CK37) that inhibited purified recombinant human choline kinase-α activity, reduced the steady-state concentration of phosphocholine in transformed cells, and selectively suppressed the growth of neoplastic cells relative to normal epithelial cells. Choline kinase-α activity is required for the downstream production of phosphatidic acid, a promoter of several Ras signaling pathways. CK37 suppressed mitogen-activated protein kinase and phosphatidylinositol 3-kinase/AKT signaling, disrupted actin cytoskeletal organization, and reduced plasma membrane ruffling. Finally, administration of CK37 significantly decreased tumor growth in a lung tumor xenograft mouse model, suppressed tumor phosphocholine, and diminished activating phosphorylations of extracellular signal-regulated kinase and AKT in vivo. Together, these results further validate choline kinase-α as a molecular target for the development of agents that interrupt Ras signaling pathways, and indicate that receptor-based computational screening should facilitate the identification of new classes of choline kinase-α inhibitors.


Assuntos
Acetamidas/farmacologia , Colina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triazóis/farmacologia , Actinas/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Colina Quinase/química , Colina Quinase/metabolismo , Biologia Computacional , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Fosforilcolina/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA