Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38505508

RESUMO

Background: In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods: Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion: This information provides valuable insights into the specific enzyme diversity of each species' venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.

2.
Acta Trop ; 252: 107134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286350

RESUMO

The venom fractions of three buthid scorpion species from Colombia, C. margaritatus, T. pachyurus and T. n. sp. aff. metuendus, were examined for antimicrobial and toxicity toward mice and insects. The three venoms were separated into individual fractions using RP-HPLC, resulting in 85 fractions from C. margaritatus, 106 from T. pachyurus, and 70 from T. n. sp. aff. metuendus. The major fractions from the three scorpion venoms, which were eluted between 35 and 50 min, were tested for antimicrobial activity and toxicity. It was confirmed that the venom of the three species contains fractions with antimicrobial peptides that were evaluated against two bacterial strains of public health importance, Pseudomonas aeruginosa and Staphylococcus aureus. The venom of C. margaritatus had two antimicrobial fractions that showed activity against the named tested strains. The venom of T. pachyurus had three fractions that showed activity against S. aureus and two against both bacterial strains. Finally, the venom of T. n. sp. aff. metuendus had one fraction that showed activity against S. aureus, and five fractions showed activity against both bacterial strains. Also, some peptide fractions from the three venoms were toxic to mice. Last, the venoms of C. margaritatus and T. pachyurus were used as immunogens to obtain neutralizing antibodies against its respective venoms and to observe antibody recognition to related and unrelated scorpion venoms. A total of 15 mg of lyophilized antibodies were able to neutralize 1.5⋅LD50 of the venoms from T. n. sp. aff. metuendus, T. pachyurus and C. margaritatus, respectively. This information provides valuable insights into the diversity of each species' venom and their potential role in antimicrobial and venom toxicity.


Assuntos
Animais Peçonhentos , Anti-Infecciosos , Venenos de Escorpião , Camundongos , Animais , Sequência de Aminoácidos , Escorpiões , Venenos de Escorpião/toxicidade , Colômbia , Staphylococcus aureus
3.
J. venom. anim. toxins incl. trop. dis ; 30: e20230063, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1550522

RESUMO

Background: In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods: Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion: This information provides valuable insights into the specific enzyme diversity of each species' venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.


Assuntos
Venenos de Escorpião/enzimologia , Venenos de Escorpião/toxicidade , Colômbia
4.
Toxins (Basel) ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37505685

RESUMO

Chihuahua is the largest state in Mexico. The ecosystem of this region is composed of large area of bushes, forests, and grasslands, which allows for a specific diversity of fauna; among them are interesting species of non-lethal scorpions. Most of the Chihuahuan scorpions have been previously morphologically and molecularly described; however, this manuscript could be the first to describe the composition of those venoms. This work aimed at the collection of two scorpion species from the region of Jiménez (Southwest of the State of Chihuahua), which belong to the species Chihuahuanus cohauilae and Chihuahuanus crassimanus; the two species were taxonomically and molecularly identified using a 16S DNA marker. Reverse-phase high-performance liquid chromatography (RP-HPLC) of C. coahuilae and C. crassimanus venoms allowed the identification of three fractions lethal to mice. Additionally, three fractions of each scorpion displayed an effect on house crickets. In the end, three new fractions from the venom of C. coahuilae were positive for antimicrobial activity, although none from C. crassimanus venom displayed growth inhibition. Despite being a preliminary study, the venom biochemical analysis of these two uncharacterized scorpion species opens the opportunity to find new molecules with potential applications in the biomedical and biotechnological fields.


Assuntos
Venenos de Escorpião , Peçonhas , Animais , Camundongos , Escorpiões/química , México , Ecossistema , Venenos de Escorpião/química
5.
Toxins (Basel) ; 15(7)2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37505705

RESUMO

Spider venoms are composed, among other substances, of peptide toxins whose selectivity for certain physiological targets has made them powerful tools for applications such as bioinsecticides, analgesics, antiarrhythmics, antibacterials, antifungals and antimalarials, among others. Bioinsecticides are an environmentally friendly alternative to conventional agrochemicals. In this paper, the primary structure of an insecticidal peptide was obtained from the venom gland transcriptome of the ctenid spider Phoneutria depilata (Transcript ID PhdNtxNav24). The peptide contains 53 amino acids, including 10 Cys residues that form 5 disulfide bonds. Using the amino acid sequence of such peptide, a synthetic gene was constructed de novo by overlapping PCRs and cloned into an expression vector. A recombinant peptide, named delta-ctenitoxin (rCtx-4), was obtained. It was expressed, folded, purified and validated using mass spectrometry (7994.61 Da). The insecticidal activity of rCtx-4 was demonstrated through intrathoracic injection in crickets (LD50 1.2 µg/g insect) and it was not toxic to mice. rCtx-4 is a potential bioinsecticide that could have a broad spectrum of applications in agriculture.


Assuntos
Inseticidas , Venenos de Aranha , Aranhas , Camundongos , Animais , Inseticidas/farmacologia , Inseticidas/química , Transcriptoma , Colômbia , Peptídeos/farmacologia , Peptídeos/toxicidade , Venenos de Aranha/genética , Venenos de Aranha/toxicidade , Venenos de Aranha/química , Aranhas/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-36578820

RESUMO

Background: Scorpion neurotoxins such as those that modify the mammalian voltage-gated sodium ion channels (Nav) are the main responsible for scorpion envenomation. Their neutralization is crucial in the production of antivenoms against scorpion stings. Methods: In the present study, two in silico designed genes - one that codes for a native neurotoxin from the venom of the Anatolian scorpion Androctonus crassicauda, named Acra 4 - and another non-native toxin - named consensus scorpion toxin (SccTx) obtained from the alignment of the primary structures of the most toxic neurotoxins from the Middle Eastern and North African scorpions - were recombinantly expressed in E. coli Origami. Results: Following bacterial expression, the two expressed neurotoxins, hereafter named HisrAcra4 and HisrSccTx, were obtained from inclusion bodies. Both recombinant neurotoxins were obtained in multiple Cys-Cys isoforms. After refolding, the active protein fractions were identified with molecular masses of 8,947.6 and 9,989.1 Da for HisrAcra4 and HisrSccTx, respectively, which agreed with their expected theoretical masses. HisrAcra4 and HisrSccTx were used as antigens to immunize two groups of rabbits, to produce either anti-HisrAcra4 or anti-HisrSccTx serum antibodies, which in turn could recognize and neutralize neurotoxins from venoms of scorpion species from the Middle East and North Africa. The antibodies obtained from rabbits neutralized the 3LD50 of Androctonus australis, Leiurus quinquestriatus hebraeus and Buthus occitanus venoms, but they did not neutralize A. crassicauda and A. mauritanicus venoms. In addition, the anti-HisrAcra4 antibodies did not neutralize any of the five scorpion venoms tested. However, an antibody blend of anti-HisrAcra4 and anti-HisrSccTx was able to neutralize A. crassicauda and A. mauritanicus venoms. Conclusions: Two recombinant Nav neurotoxins, from different peptide families, were used as antigens to generate IgGs for neutralizing scorpion venoms of species from the Middle East and North Africa.

7.
Toxins (Basel) ; 14(8)2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-36006194

RESUMO

Biochemical and biological differences in the venom of Crotalus durissus cumanensis from three ecoregions of Colombia were evaluated. Rattlesnakes were collected from the geographic areas of Magdalena Medio (MM), Caribe (CA) and Orinoquía (OR). All three regionally distributed venoms contain proteases, PLA2s and the basic subunit of crotoxin. However, only crotamine was detected in the CA venom. The highest lethality, coagulant, phospholipase A2 and hyaluronidase activities were found in the MM venom. Also, some differences, observed by western blot and immunoaffinity, were found in all three venoms when using commercial antivenoms. Furthermore, all three eco-regional venoms showed intraspecific variability, considering the differences in the abundance and intensity of their components, in addition to the activity and response to commercial antivenoms.


Assuntos
Venenos de Crotalídeos , Crotoxina , Animais , Antivenenos , Colômbia , Crotalus , Fosfolipases A2
8.
Toxins (Basel) ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35737043

RESUMO

Crotoxin complex CA/CB and crotamine are the main toxins associated with Crotalus envenomation besides the enzymatic activities of phospholipases (PLA2) and proteases. The neutralization at least of the crotoxin complex by neutralizing the subunit B could be a key in the production process of antivenoms against crotalids. Therefore, in this work, a Crotoxin B was recombinantly expressed to evaluate its capacity as an immunogen and its ability to produce neutralizing antibodies against crotalid venoms. A Crotoxin B transcript from Crotalus tzabcan was cloned into a pCR®2.1-TOPO vector (Invitrogen, Waltham, MA, USA) and subsequently expressed heterologously in bacteria. HisrCrotoxin B was extracted from inclusion bodies and refolded in vitro. The secondary structure of HisrCrotoxin B was comparable to the secondary structure of the native Crotoxin B, and it has PLA2 activity as the native Crotoxin B. HisrCrotoxin B was used to immunize rabbits, and the obtained antibodies partially inhibited the activity of PLA2 from C. tzabcan. The anti-HisrCrotoxin B antibodies neutralized the native Crotoxin B and the whole venoms from C. tzabcan, C. s. salvini, and C. mictlantecuhtli. Additionally, anti-HisrCrotoxin B antibodies recognized native Crotoxin B from different Crotalus species, and they could discriminate venom in species with high or low levels of or absence of Crotoxin B.


Assuntos
Venenos de Crotalídeos , Crotoxina , Animais , Venenos de Crotalídeos/metabolismo , Crotalus/metabolismo , Fosfolipases A2/genética , Dobramento de Proteína , Coelhos
9.
Antibiotics (Basel) ; 11(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625251

RESUMO

The antimicrobial and immunomodulatory capacities of the peptide Css54 and the chemokine MCP-1 were tested. The first, a peptide isolated from the venom of the scorpion Centruroides suffusus suffusus was synthesized chemically. In contrast, the second is a monocyte chemoattractant expressed as a recombinant protein in our lab. It was observed in vitro that Css54 inhibited the growth of Salmonella enterica serovar Typhimurium (6.2 µg/mL). At high concentrations, it was toxic to macrophages (25 µg/mL), activated macrophage phagocytosis (1.5 µg/mL), and bound Salmonella LPS (3 µg/mL). On the other hand, the recombinant MCP-1 neither inhibited the growth of Salmonella Typhimurium nor was it toxic to macrophages (up to 25 µg/mL), nor activated macrophage phagocytosis or bound Salmonella LPS (up to 3 µg/mL). Although it was observed in vivo in mice Balb/C that both Css54 and MCP-1 did not resolve the intraperitoneal infection by S. Typhimurium, Css54 decreased the expression of IL-6 and increased IL-10, IL-12p70, and TNF-α levels; meanwhile, MCP-1 decreased the expression of IFN-γ and increased IL-12p70 and TNF-α. It was also observed that the combination of both molecules Css54 and MCP-1 increased the expression of IL-10 and TNF-α.

10.
Toxins (Basel) ; 14(5)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35622542

RESUMO

The transcriptome of the venom glands of the Phoneutria depilata spider was analyzed using RNA-seq with an Illumina protocol, which yielded 86,424 assembled transcripts. A total of 682 transcripts were identified as potentially coding for venom components. Most of the transcripts found were neurotoxins (156) that commonly act on sodium and calcium channels. Nevertheless, transcripts coding for some enzymes (239), growth factors (48), clotting factors (6), and a diuretic hormone (1) were found, which have not been described in this spider genus. Furthermore, an enzymatic characterization of the venom of P. depilata was performed, and the proteomic analysis showed a correlation between active protein bands and protein sequences found in the transcriptome. The transcriptomic analysis of P. depilata venom glands show a deeper description of its protein components, allowing the identification of novel molecules that could lead to the treatment of human diseases, or could be models for developing bioinsecticides.


Assuntos
Venenos de Aranha , Aranhas , Animais , Colômbia , Proteômica , Venenos de Aranha/genética , Venenos de Aranha/metabolismo , Aranhas/genética , Transcriptoma
11.
Toxicon X ; 13: 100090, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35024608

RESUMO

BACKGROUND: The development of more effective antivenoms remains a necessity for countries where scorpionism is a public health problem. Also, the regionalization of antivenoms may be important for some countries with special scorpionism characteristics. OBJECTIVE: Production of antibodies capable of neutralizing the lethal effect of the venom of three scorpion species from Panama. METHODS: The primary structures of two neurotoxins from T. pachyurus, one from T. cerroazul and another from C. bicolor were elucidated using N-terminal amino acid degradation and Sanger gene cloned sequencing. The obtained mRNA transcripts were cloned and expressed using E. coli vectors. Different bacterial expression conditions were tested and the best culture conditions for each expressed protein is reported. The expressed scorpion toxins were purified by chromatographic methods and used as immunogens in rabbits. RESULTS: The antibodies produced under the reported immunization scheme show better neutralization (ED50) than other reported commercial antivenoms used to neutralize similar species scorpion venoms under similar LD50 conditions. CONCLUSION: The information reported here shows the proof of concept for selecting recombinant immunogens with the ability to produce antibodies for neutralizing the lethal effects of the most important medical species of scorpions in Panama.

12.
Amino Acids ; 52(3): 465-475, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32067123

RESUMO

δ-Atracotoxins, also known as δ-hexatoxins, are spider neurotoxic peptides, lethal to both vertebrates and insects. Their mechanism of action involves the binding to of the S3/S4 loop of the domain IV of the voltage-gated sodium channels (Nav). Because of the chemical difficulties of synthesizing folded synthetic δ-atracotoxins correctly, here we explore an expression system that is designed to produce biologically active recombinant δ-atracotoxins, and a number of variants, in order to establish certain amino acids implicated in the pharmacophore of this lethal neurotoxin. In order to elucidate and verify which amino acid residues play a key role that is toxic to vertebrates and insects, amino acid substitutes were produced by aligning the primary structures of several lethal δ-atracotoxins with those of δ-atracotoxins-Hv1b; a member of the δ-atracotoxin family that has low impact on vertebrates and is not toxic to insects. Our findings corroborate that the substitutions of the amino acid residue Y22 from δ-atracotoxin-Mg1a (Magi4) to K22 in δ-atracotoxin-Hv1b reduces its mammalian activity. Moreover, the substitutions of the amino acid residues Y22 and N26 from δ-atracotoxin-Mg1a (Magi4) to K22 and N26 in δ-atracotoxin-Hv1b reduces its insecticidal activity. Also, the basic residues K4 and R5 are important for keeping such insecticidal activity. Structural models suggest that such residues are clustered onto two bioactive surfaces, which share similar areas, previously reported as bioactive surfaces for scorpion α-toxins. Furthermore, these bioactive surfaces were also found to be similar to those found in related spider and anemone toxins, which affect the same Nav receptor, indicating that these motifs are important not only for scorpion but may be also for animal toxins that affect the S3/S4 loop of the domain IV of the Nav.


Assuntos
Inseticidas/química , Neurotoxinas/química , Venenos de Aranha/química , Motivos de Aminoácidos , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Aminoácidos/genética , Animais , Gryllidae , Inseticidas/toxicidade , Dose Letal Mediana , Camundongos , Neurotoxinas/genética , Neurotoxinas/toxicidade , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Venenos de Aranha/genética , Venenos de Aranha/toxicidade
13.
Front Pharmacol ; 11: 563858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597864

RESUMO

Spider venoms include various peptide toxins that modify the ion currents, mainly of excitable insect cells. Consequently, scientific research on spider venoms has revealed a broad range of peptide toxins with different pharmacological properties, even for mammal species. In this work, thirty animal venoms were screened against hKv1.5, a potential target for atrial fibrillation therapy. The whole venom of the spider Oculicosa supermirabilis, which is also insecticidal to house crickets, caused voltage-gated potassium ion channel modulation in hKv1.5. Therefore, a peptide from the spider O. supermirabilis venom, named Osu1, was identified through HPLC reverse-phase fractionation. Osu1 displayed similar biological properties as the whole venom; so, the primary sequence of Osu1 was elucidated by both of N-terminal degradation and endoproteolytic cleavage. Based on its primary structure, a gene that codifies for Osu1 was constructed de novo from protein to DNA by reverse translation. A recombinant Osu1 was expressed using a pQE30 vector inside the E. coli SHuffle expression system. recombinant Osu1 had voltage-gated potassium ion channel modulation of human hKv1.5, and it was also as insecticidal as the native toxin. Due to its novel primary structure, and hypothesized disulfide pairing motif, Osu1 may represent a new family of spider toxins.

14.
Toxins (Basel) ; 11(12)2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810356

RESUMO

Bothropic venoms contain enzymes such as metalloproteases, serine-proteases, and phospholipases, which acting by themselves, or in synergism, are the cause of the envenomation symptoms and death. Here, two mRNA transcripts, one that codes for a metalloprotease and another for a serine-protease, were isolated from a Bothrops ammodytoides venom gland. The metalloprotease and serine-protease transcripts were cloned on a pCR®2.1-TOPO vector and consequently expressed in a recombinant way in E. coli (strains Origami and M15, respectively), using pQE30 vectors. The recombinant proteins were named rBamSP_1 and rBamMP_1, and they were formed by an N-terminal fusion protein of 16 amino acid residues, followed by the sequence of the mature proteins. After bacterial expression, each recombinant enzyme was recovered from inclusion bodies and treated with chaotropic agents. The experimental molecular masses for rBamSP_1 and rBamMP_1 agreed with their expected theoretical ones, and their secondary structure spectra obtained by circular dichroism were comparable to that of similar proteins. Additionally, equivalent mixtures of rBamSP_1, rBamMP_1 together with a previous reported recombinant phospholipase, rBamPLA2_1, were used to immunize rabbits to produce serum antibodies, which in turn recognized serine-proteases, metalloproteases and PLA2s from B. ammodytoides and other regional viper venoms. Finally, rabbit antibodies neutralized the 3LD50 of B. ammodytoides venom.


Assuntos
Anticorpos Neutralizantes/imunologia , Bothrops , Venenos de Crotalídeos/imunologia , Metaloproteases/imunologia , Fosfolipases/imunologia , Proteínas de Répteis/imunologia , Serina Proteases/imunologia , Animais , Venenos de Crotalídeos/química , Metaloproteases/química , Metaloproteases/genética , Fosfolipases/química , Fosfolipases/genética , Coelhos , Proteínas Recombinantes , Proteínas de Répteis/química , Proteínas de Répteis/genética , Serina Proteases/química , Serina Proteases/genética
15.
Protein Expr Purif ; 154: 33-43, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30205154

RESUMO

A mRNA transcript that codes for a phospholipase (PLA2) was isolated from a single venom gland of the Bothrops ammodytoides viper. The PLA2 transcript was cloned onto a pCR®2.1-TOPO vector and subsequently expressed heterologously in the E. coli strain M15, using the pQE30 vector. The recombinant phospholipase was named rBamPLA2_1, and is composed of an N-terminal fusion protein of 16 residues, along with 122 residues from the mature protein that includes 14 cysteines that form 7 disulfide bonds. Following bacterial expression, rBamPLA2_1 was obtained from inclusion bodies and extracted using a chaotropic agent. rBamPLA2_1 had an experimental molecular mass of 15,692.5 Da that concurred with its theoretical molecular mass. rBamPLA2_1 was refolded in in vitro conditions and after refolding, three main protein fractions with similar molecular masses, were identified. Although, the three fractions were considered to represent different oxidized cystine isoforms, their secondary structures were comparable. All three recombinant isoforms were active on egg-yolk phospholipid and recognized similar cell membrane phospholipids to be native PLA2s, isolated from B. ammodytoides venom. A mixture of the three rBamPLA2_1 cystine isoforms was used to immunize a horse in order to produce serum antibodies (anti-rBamPLA2_1), which partially inhibited the indirect hemolytic activity of B. ammodytoides venom. Although, anti-rBamPLA2_1 antibodies were not able to recognize crotoxin, a PLA2 from the venom of a related but different viper genus, Crotalus durissus terrificus, they recognized PLA2s in other venoms from regional species of Bothrops.


Assuntos
Bothrops/genética , Clonagem Molecular , Venenos de Crotalídeos , DNA Complementar , Expressão Gênica , Fosfolipases A2 , Dobramento de Proteína , Animais , Venenos de Crotalídeos/biossíntese , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/imunologia , Escherichia coli/enzimologia , Escherichia coli/genética , Cavalos/imunologia , Fosfolipases A2/biossíntese , Fosfolipases A2/genética , Fosfolipases A2/imunologia , Fosfolipases A2/isolamento & purificação
16.
Artigo em Inglês | MEDLINE | ID: mdl-27617022

RESUMO

BACKGROUND: The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. METHOD: Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). RESULTS: The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. CONCLUSION: HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.

17.
J. venom. anim. toxins incl. trop. dis ; 22: [1-8], 2016. ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484670

RESUMO

The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. Method Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). Results The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. Conclusion HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.


Assuntos
Animais , Antivenenos/biossíntese , Neurotoxinas/classificação , Neurotoxinas/genética , Serpentes
18.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954790

RESUMO

Background The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. Method Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). Results The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. Conclusion HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.(AU)


Assuntos
Dobramento de Proteína , Elapidae , Venenos Elapídicos , Anticorpos , Neurotoxinas
19.
Artigo em Inglês | MEDLINE | ID: mdl-26085829

RESUMO

BACKGROUND: The choice between heterologous expression versus chemical synthesis for synthesizing short cysteine-rich insecticidal peptides from arthropods may impact the obtainment of yields and well-folded bioactive molecules for scientific research. Therefore, two recombinant expression systems were compared to that of chemical synthesis for producing Ba1, a cysteine-rich spider neurotoxin. METHODS: The transcription of the insecticidal neurotoxin Ba1 was obtained from a cDNA library of venom glands of the spider Brachypelma albiceps. It was cloned into the pCR®2.1-TOPO® cloning vector and then introduced in two different expression vectors, pQE40 and pET28a(+). Each vector was transfected into E. coli M15 and BL21 cells, respectively, and expressed under induction with isopropyl thiogalactoside (IPTG). The chemical synthesis of Ba1 was performed in an Applied Biosystems 433A peptide synthesizer. RESULTS: Both expression systems pQE40 and pET28a(+) expressed the His-tagged recombinant protein products, HisrDFHRBa1 and HisrBa1, respectively, as inclusion bodies. The recombinant proteins HisrDFHRBa1 and HisrBa1 presented respective molecular masses of 28,289 and 8274.6 Da, and were not biologically active. These results suggested that both HisrDFHRBa1 and HisrBa1 were oxidized after cell extraction, and that their insecticidal activities were affected by their N-terminal pro-peptides and different disulfide bridge arrangements. The respective protein expression yields for HisrDFHRBa1 and HisrBa1 were 100 µg/L and 900 µg/L of culture medium. HisrBa1 was reduced and folded under in vitro conditions. The in vitro folding of HisrBa1 produced several isoforms, one of which, after removing its N-terminal pro-peptide by enzymatic cleavage, presented elevated insecticidal activities compared to the native Ba1. Furthermore, the His-tagged protein HisrDFHRBa1 underwent enzymatic cleavage to obtain recombinant Ba1 (rBa1). As expected, the molecular mass of rBa1 was 4406.4 Da. On the other hand, Ba1 was chemically synthesized (sBa1) with a yield of 11 mg per 0.1 mmol of amino acid assembly. CONCLUSIONS: The two recombinant insecticidal peptides and the one synthesized chemically were as active as the native Ba1; however, toxin yields differed drastically.

20.
J. venom. anim. toxins incl. trop. dis ; 21: 1-10, 31/03/2015. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484624

RESUMO

Background: The choice between heterologous expression versus chemical synthesis for synthesizing short cysteine-rich insecticidal peptides from arthropods may impact the obtainment of yields and well-folded bioactive molecules for scientific research. Therefore, two recombinant expression systems were compared to that of chemical synthesis for producing Ba1, a cysteine-rich spider neurotoxin. Methods: The transcription of the insecticidal neurotoxin Ba1 was obtained from a cDNA library of venom glands of the spider Brachypelma albiceps.It was cloned into the pCR®2.1-TOPO® cloning vector and then introduced in two different expression vectors, pQE40 and pET28a+. Each vector was transfected into E. coli M15 and BL21 cells, respectively, and expressed under induction with isopropyl thiogalactoside (IPTG). The chemical synthesis of Ba1 was performed in an Applied Biosystems 433A peptide synthesizer. Results: Both expression systems pQE40 and pET28a+ expressed the His-tagged recombinant protein products, HisrDFHRBa1 and HisrBa1, respectively, as inclusion bodies. The recombinant proteins HisrDFHRBa1 and HisrBa1 presented respective molecular masses of 28,289 and 8274.6 Da, and were not biologically active. These results suggested that both HisrDFHRBa1 and HisrBa1 were oxidized after cell extraction, and that their insecticidal activities were affected by their N-terminal pro-peptides and different disulfide bridge arrangements. The respective protein expression yields for HisrDFHRBa1 and HisrBa1 were 100 μg/L and 900 μg/L of culture medium. HisrBa1 was reduced and folded under in vitroconditions. The in vitro folding of HisrBa1 produced several isoforms, one of which, after removing its N-terminal pro-peptide by enzymatic cleavage, presented elevated insecticidal activities compared to the native Ba1. Furthermore, the His-tagged protein HisrDFHRBa1 underwent enzymatic cleavage to obtain recombinant Ba1 (rBa1). As expected, the molecular mass of rBa1 was 4406.4 Da. On the other hand, Ba1 was chemically synthesized (sBa1) with a yield of 11 mg per 0.1 mmol of amino acid assembly. Conclusions: The two recombinant insecticidal peptides and the one synthesized chemically were as active as the native Ba1; however, toxin yields differed drastically.


Assuntos
Animais , Aranhas , Cisteína , Inseticidas , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA