Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 207: 117812, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839057

RESUMO

Micropollutants (MP) with varying ozone-reactive moieties were spiked to lake water in the influent of a drinking water pilot plant consisting of an ozonation followed by a biological sand filtration. During ozonation, 227 transformation products (OTPs) from 39 of the spiked 51 MPs were detected after solid phase extraction by liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS). Based on the MS/MS data, tentative molecular structures are proposed. Reaction mechanisms for the formation of a large number of OTPs are suggested by combination of the kinetics of formation and abatement and state-of-the-art knowledge on ozone and hydroxyl radical chemistry. OTPs forming as primary or higher generation products from the oxidation of MPs could be differentiated. However, some expected products from the reactions of ozone with activated aromatic compounds and olefins were not detected with the applied analytical procedure. 187 OTPs were present in the sand filtration in sufficiently high concentrations to elucidate their fate in this treatment step. 35 of these OTPs (19%) were abated in the sand filtration step, most likely due to biodegradation. Only 24 (13%) of the OTPs were abated more efficiently than the parent compounds, with a dependency on the functional group of the parent MPs and OTPs. Overall, this study provides evidence, that the common assumption that OTPs are easily abated in biological post-treatment is not generally valid. Nevertheless, it is unknown how the OTPs, which escaped detection, would have behaved in the biological post-treatment.


Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Espectrometria de Massas em Tandem , Águas Residuárias/análise , Poluentes Químicos da Água/análise
2.
Water Res ; 200: 117200, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34051461

RESUMO

Ozonation is increasingly applied in water and wastewater treatment for the abatement of micropollutants (MPs). However, the transformation products formed during ozonation (OTPs) and their fate in biological or sorptive post-treatments is largely unknown. In this project, a high-throughput approach, combining laboratory ozonation experiments and detection by liquid chromatography high-resolution mass spectrometry (LC-HR-MS/MS), was developed and applied to identify OTPs formed during ozonation of wastewater effluent for a large number of relevant MPs (total 87). For the laboratory ozonation experiments, a simplified experimental solution, consisting of surrogate organic matter (methanol and acetate), was created, which produced ozonation conditions similar to realistic conditions in terms of ozone and hydroxyl radical exposures. The 87 selected parent MPs were divided into 19 mixtures, which enabled the identification of OTPs with an optimized number of experiments. The following two approaches were considered to identify OTPs. (1) A screening of LC-HR-MS signal formation in these experiments was performed and revealed a list of 1749 potential OTP candidate signals associated to 70 parent MPs. This list can be used in future suspect screening studies. (2) A screening was performed for signals that were formed in both batch experiments and in samples of wastewater treatment plants (WWTPs). This second approach was ultimately more time-efficient and was applied to four different WWTPs with ozonation (specific ozone doses in the range 0.23-0.55 gO3/gDOC), leading to the identification of 84 relevant OTPs of 40 parent MPs in wastewater effluent. Chemical structures could be proposed for 83 OTPs through the interpretation of MS/MS spectra and expert knowledge in ozone chemistry. Forty-eight OTPs (58%) have not been reported previously. The fate of the verified OTPs was studied in different post-treatment steps. During sand filtration, 87-89% of the OTPs were stable. In granular activated carbon (GAC) filters, OTPs were abated with decreasing efficiency with increasing run times of the filters. For example, in a GAC filter with 16,000 bed volumes, 53% of the OTPs were abated, while in a GAC filter with 35,000 bed volumes, 40% of the OTPs were abated. The highest abatement (87% of OTPs) was observed when 13 mg/L powdered activated carbon (PAC) was dosed onto a sand filter.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Laboratórios , Espectrometria de Massas em Tandem , Águas Residuárias/análise , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 54(20): 13066-13076, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32936630

RESUMO

Photochemical reactions convert dissolved organic matter (DOM) into inorganic and low-molecular-weight organic products, contributing to its cycling across environmental compartments. However, knowledge on the formation mechanisms of these products is still scarce. In this work, we investigate the triplet-sensitized photodegradation of cysteine sulfinic acid, a (photo)degradation product of cysteine, to sulfate (SO42-). We use kinetic analysis, targeted experiments, and previous literature from several fields of chemistry to explain the elementary steps that lead to the release of sulfate. Our analysis indicates that triplet sensitizers act as one-electron oxidants on the sulfinate S lone pair. The resulting radical undergoes C-S fragmentation to form SO2, which becomes hydrated to sulfite/bisulfite (S(IV)). S(IV) is further oxidized to SO42- in the presence of triplet sensitizers and oxygen. We point out that the reaction sequence SO2 ⇌ S(IV) → SO42- is valid independently of the chemical structure of the model compound and might represent a sulfate photoproduction mechanism with general validity for DOS. Our mechanistic investigation revealed that amino acids in general might also be photochemical precursors of CO2, ammonia, acetaldehyde, and H2O2 and that reaction byproducts can influence the rate and mechanism of S(IV) (photo)oxidation.


Assuntos
Cisteína , Poluentes Químicos da Água , Cisteína/análogos & derivados , Peróxido de Hidrogênio , Cinética , Enxofre
4.
Environ Sci Technol ; 53(22): 13191-13200, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31599585

RESUMO

Photodegradation processes play an important role in releasing elements tied up in biologically refractory forms in the environment, and are increasingly being recognized as important contributors to biogeochemical cycles. While complete photo-oxidation of dissolved organic carbon (to CO2) and dissolved organic phosphorous (to PO43-) has been documented, the analogous photoproduction of sulfate from dissolved organic sulfur (DOS) has not yet been reported. Recent high-resolution mass spectrometry studies showed a selective loss of organic sulfur during photodegradation of dissolved organic matter, which was hypothesized to result in the production of sulfate. Here, we provide evidence of ubiquitous production of sulfate, methanesulfonic acid (MSA), and methanesulfinic acid (MSIA) during photodegradation of DOM samples from a wide range of natural terrestrial environments. We show that photochemical production of sulfate is generally more efficient than the production of MSA and MSIA, as well as volatile S-containing compounds such as CS2 and COS. We also identify possible molecular precursors for sulfate and MSA, and we demonstrate that a wide range of relevant classes of DOS compounds (in terms of S oxidation state and molecular structure) can liberate sulfate upon photosensitized degradation. This work suggests that photochemistry may play a more significant role in the aquatic and atmospheric fate of DOS than currently believed.


Assuntos
Óxidos de Enxofre , Enxofre , Mesilatos , Processos Fotoquímicos , Sulfatos
5.
ACS Energy Lett ; 3(3): 641-646, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29552638

RESUMO

Colloidal lead halide perovskite nanocrystals (NCs) have recently emerged as versatile photonic sources. Their processing and optoelectronic applications are hampered by the loss of colloidal stability and structural integrity due to the facile desorption of surface capping molecules during isolation and purification. To address this issue, herein, we propose a new ligand capping strategy utilizing common and inexpensive long-chain zwitterionic molecules such as 3-(N,N-dimethyloctadecylammonio)propanesulfonate, resulting in much improved chemical durability. In particular, this class of ligands allows for the isolation of clean NCs with high photoluminescence quantum yields (PL QYs) of above 90% after four rounds of precipitation/redispersion along with much higher overall reaction yields of uniform and colloidal dispersible NCs. Densely packed films of these NCs exhibit high PL QY values and effective charge transport. Consequently, they exhibit photoconductivity and low thresholds for amplified spontaneous emission of 2 µJ cm-2 under femtosecond optical excitation and are suited for efficient light-emitting diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA