Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Blood Cancer Discov ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713018

RESUMO

Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPNs) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for triple negative myelofibrosis (MF) patients who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in triple negative MF, and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs.

2.
Med Oncol ; 41(6): 135, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704802

RESUMO

Somatic evolution selects cancer cell phenotypes that maximize survival and proliferation in dynamic environments. Although cancer cells are molecularly heterogeneous, we hypothesized convergent adaptive strategies to common host selection forces can be inferred from patterns of epigenetic and genetic evolutionary selection in similar tumors. We systematically investigated gene mutations and expression changes in lung adenocarcinomas with no common driver genes (n = 313). Although 13,461 genes were mutated in at least one sample, only 376 non-synonymous mutations evidenced positive evolutionary selection with conservation of 224 genes, while 1736 and 2430 genes exhibited ≥ two-fold increased and ≥ 50% decreased expression, respectively. Mutations under positive selection are more frequent in genes with significantly altered expression suggesting they often "hardwire" pre-existing epigenetically driven adaptations. Conserved genes averaged 16-fold higher expression in normal lung tissue compared to those with selected mutations demonstrating pathways necessary for both normal cell function and optimal cancer cell fitness. The convergent LUAD phenotype exhibits loss of differentiated functions and cell-cell interactions governing tissue organization. Conservation with increased expression is found in genes associated with cell cycle, DNA repair, p53 pathway, epigenetic modifiers, and glucose metabolism. No canonical driver gene pathways exhibit strong positive selection, but extensive down-regulation of membrane ion channels suggests decreased transmembrane potential may generate persistent proliferative signals. NCD LUADs perform niche construction generating a stiff, immunosuppressive microenvironment through selection of specific collagens and proteases. NCD LUADs evolve to a convergent phenotype through a network of interconnected genetic, epigenetic, and ecological pathways.


Assuntos
Adenocarcinoma de Pulmão , Epigênese Genética , Neoplasias Pulmonares , Mutação , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Evolução Molecular , Microambiente Tumoral/genética
3.
Blood Cancer Discov ; 5(1): 5-7, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38085608

RESUMO

SUMMARY: In this issue of Blood Cancer Discovery, Neri, Barwick, and colleagues and Welsh, Barwick, and colleagues performed RNA sequencing, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and genetic studies to characterize the underlying mechanisms of immunomodulatory drug (IMiD) resistance in multiple myeloma. They demonstrated that IMiD resistance is driven by sustained expression of MYC and IRF4 via transcriptional plasticity that involves induction of ETV4 and BATF proteins, the binding of these proteins to their super-enhancers, and the recruitment of BRD4 and p300. Finally, these studies suggest IMiD and p300 inhibitor combination as a promising therapeutic strategy in multiple myeloma. See related article by Neri, Barwick, et al., p. 56 (9). See related article by Welsh, Barwick, et al., p. 34 (10).


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proteínas Nucleares/metabolismo , Agentes de Imunomodulação , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/uso terapêutico , Proteínas que Contêm Bromodomínio , Fatores de Transcrição/genética , Proteínas de Ciclo Celular
4.
Cancer Epidemiol Biomarkers Prev ; 32(11): 1482-1484, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732892

RESUMO

Basic and clinical cancer research discoveries stemming from the nation's cancer centers have markedly improved outcomes for many cancer patients. Despite this forward momentum in our progress against this complex disease, cancer in all its forms remains a major public health challenge that touches the lives of nearly every American, either directly or indirectly. The newly formed AACR Cancer Centers Alliance will accelerate the pace of discovery by providing an ongoing mechanism for transferring new knowledge, sharing resources, developing national demonstration projects, and driving innovation that impacts cancer science, cancer care delivery, and science and health policy.


Assuntos
Neoplasias , Humanos , Estados Unidos , Neoplasias/prevenção & controle , Atenção à Saúde , Política de Saúde , Saúde Pública
5.
Mol Cancer Res ; 21(11): 1139-1141, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732893

RESUMO

Basic and clinical cancer research discoveries stemming from the nation's cancer centers have markedly improved outcomes for many cancer patients. Despite this forward momentum in our progress against this complex disease, cancer in all its forms remains a major public health challenge that touches the lives of nearly every American, either directly or indirectly. The newly formed AACR Cancer Centers Alliance will accelerate the pace of discovery by providing an ongoing mechanism for transferring new knowledge, sharing resources, developing national demonstration projects, and driving innovation that impacts cancer science, cancer care delivery, and science and health policy.


Assuntos
Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia
6.
Cancer Prev Res (Phila) ; 16(11): 591-594, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732897

RESUMO

Basic and clinical cancer research discoveries stemming from the nation's cancer centers have markedly improved outcomes for many cancer patients. Despite this forward momentum in our progress against this complex disease, cancer in all its forms remains a major public health challenge that touches the lives of nearly every American, either directly or indirectly. The newly formed AACR Cancer Centers Alliance will accelerate the pace of discovery by providing an ongoing mechanism for transferring new knowledge, sharing resources, developing national demonstration projects, and driving innovation that impacts cancer science, cancer care delivery, and science and health policy.


Assuntos
Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia , Atenção à Saúde , Saúde Pública
7.
Clin Cancer Res ; 29(21): 4338-4340, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732904

RESUMO

Basic and clinical cancer research discoveries stemming from the nation's cancer centers have markedly improved outcomes for many cancer patients. Despite this forward momentum in our progress against this complex disease, cancer in all its forms remains a major public health challenge that touches the lives of nearly every American, either directly or indirectly. The newly formed AACR Cancer Centers Alliance will accelerate the pace of discovery by providing an ongoing mechanism for transferring new knowledge, sharing resources, developing national demonstration projects, and driving innovation that impacts cancer science, cancer care delivery, and science and health policy.


Assuntos
Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia , Atenção à Saúde
8.
Blood Cancer Discov ; 4(6): 420-422, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732908

RESUMO

SUMMARY: Basic and clinical cancer research discoveries stemming from the nation's cancer centers have markedly improved outcomes for many cancer patients. Despite this forward momentum in our progress against this complex disease, cancer in all its forms remains a major public health challenge that touches the lives of nearly every American, either directly or indirectly. The newly formed AACR Cancer Centers Alliance will accelerate the pace of discovery by providing an ongoing mechanism for transferring new knowledge, sharing resources, developing national demonstration projects, and driving innovation that impacts cancer science, cancer care delivery, and science and health policy.


Assuntos
Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia , Atenção à Saúde , Política de Saúde , Saúde Pública
9.
Cancer Res ; 83(21): 3504-3506, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732910

RESUMO

Basic and clinical cancer research discoveries stemming from the nation's cancer centers have markedly improved outcomes for many cancer patients. Despite this forward momentum in our progress against this complex disease, cancer in all its forms remains a major public health challenge that touches the lives of nearly every American, either directly or indirectly. The newly formed AACR Cancer Centers Alliance will accelerate the pace of discovery by providing an ongoing mechanism for transferring new knowledge, sharing resources, developing national demonstration projects, and driving innovation that impacts cancer science, cancer care delivery, and science and health policy.


Assuntos
Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia , Atenção à Saúde
10.
Cancer Res ; 83(23): 3901-3919, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702657

RESUMO

Multiple myeloma remains an incurable malignancy due to acquisition of intrinsic programs that drive therapy resistance. Here we report that casein kinase-1δ (CK1δ) and CK1ε are therapeutic targets in multiple myeloma that are necessary to sustain mitochondrial metabolism. Specifically, the dual CK1δ/CK1ε inhibitor SR-3029 had potent in vivo and ex vivo anti-multiple myeloma activity, including against primary multiple myeloma patient specimens. RNA sequencing (RNA-seq) and metabolic analyses revealed inhibiting CK1δ/CK1ε disables multiple myeloma metabolism by suppressing genes involved in oxidative phosphorylation (OxPhos), reducing citric acid cycle intermediates, and suppressing complexes I and IV of the electron transport chain. Finally, sensitivity of multiple myeloma patient specimens to SR-3029 correlated with elevated expression of mitochondrial genes, and RNA-seq from 687 multiple myeloma patient samples revealed that increased CSNK1D, CSNK1E, and OxPhos genes correlate with disease progression and inferior outcomes. Thus, increases in mitochondrial metabolism are a hallmark of multiple myeloma progression that can be disabled by targeting CK1δ/CK1ε. SIGNIFICANCE: CK1δ and CK1ε are attractive therapeutic targets in multiple myeloma whose expression increases with disease progression and connote poor outcomes, and that are necessary to sustain expression of genes directing OxPhos.


Assuntos
Caseína Quinase Idelta , Mieloma Múltiplo , Humanos , Caseína Quinase Idelta/genética , Caseína Quinase Idelta/metabolismo , Mieloma Múltiplo/genética , Sobrevivência Celular , Fosforilação , Progressão da Doença
11.
Cancer Discov ; 13(11): 2316-2318, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702762

RESUMO

SUMMARY: Basic and clinical cancer research discoveries stemming from the nation's cancer centers have markedly improved outcomes for many cancer patients. Despite this forward momentum in our progress against this complex disease, cancer in all its forms remains a major public health challenge that touches the lives of nearly every American, either directly or indirectly. The newly formed AACR Cancer Centers Alliance will accelerate the pace of discovery by providing an ongoing mechanism for transferring new knowledge, sharing resources, developing national demonstration projects, and driving innovation that impacts cancer science, cancer care delivery, and science and health policy.


Assuntos
Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia , Política de Saúde , Saúde Pública
12.
Cancer Med ; 12(17): 18405-18417, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525619

RESUMO

BACKGROUND: Aspirin use has been associated with reduced ovarian cancer risk, yet the underlying biological mechanisms are not fully understood. To gain mechanistic insights, we assessed the association between prediagnosis low and regular-dose aspirin use and gene expression profiles in ovarian tumors. METHODS: RNA sequencing was performed on high-grade serous, poorly differentiated, and high-grade endometrioid ovarian cancer tumors from the Nurses' Health Study (NHS), NHSII, and New England Case-Control Study (n = 92 cases for low, 153 cases for regular-dose aspirin). Linear regression identified differentially expressed genes associated with aspirin use, adjusted for birth decade and cohort. False discovery rates (FDR) were used to account for multiple testing and gene set enrichment analysis was used to identify biological pathways. RESULTS: No individual genes were significantly differentially expressed in ovarian tumors in low or regular-dose aspirin users accounting for multiple comparisons. However, current versus never use of low-dose aspirin was associated with upregulation of immune pathways (e.g., allograft rejection, FDR = 5.8 × 10-10 ; interferon-gamma response, FDR = 2.0 × 10-4 ) and downregulation of estrogen response pathways (e.g., estrogen response late, FDR = 4.9 × 10-8 ). Ovarian tumors from current regular aspirin users versus never users were also associated with upregulation in interferon pathways (FDR <1.5 × 10-4 ) and downregulation of multiple extracellular matrix (ECM) architecture pathways (e.g., ECM organization, 4.7 × 10-8 ). CONCLUSION: Our results suggest low and regular-dose aspirin may impair ovarian tumorigenesis in part via enhancing adaptive immune response and decreasing metastatic potential supporting the likely differential effects on ovarian carcinogenesis and progression by dose of aspirin.


Assuntos
Aspirina , Neoplasias Ovarianas , Feminino , Humanos , Aspirina/efeitos adversos , Estudos de Casos e Controles , Neoplasias Ovarianas/patologia , Expressão Gênica , Estrogênios
13.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37581943

RESUMO

Glutaminolysis is a hallmark of the activation and metabolic reprogramming of T cells. Isotopic tracer analyses of antigen-activated effector CD8+ T cells revealed that glutamine is the principal carbon source for the biosynthesis of polyamines putrescine, spermidine, and spermine. These metabolites play critical roles in activation-induced T cell proliferation, as well as for the production of hypusine, which is derived from spermidine and is covalently linked to the translation elongation factor eukaryotic translation initiation factor 5A (eIF5A). Here, we demonstrated that the glutamine/polyamine/hypusine axis controlled the expression of CD69, an important regulator of tissue-resident memory T cells (Trm). Inhibition of this circuit augmented the development of Trm cells ex vivo and in vivo in the BM, a well-established niche for Trm cells. Furthermore, blocking the polyamine/hypusine axis augmented CD69 expression as well as IFN-γ and TNF-α production in (a) human CD8+ T cells from peripheral blood and sarcoma tumor infiltrating lymphocytes and (b) human CD8+ CAR-T cells. Collectively, these findings support the notion that the polyamine-hypusine circuit can be exploited to modulate Trm cells for therapeutic benefit.


Assuntos
Poliaminas , Espermidina , Humanos , Poliaminas/metabolismo , Espermidina/metabolismo , Células T de Memória , Glutamina/metabolismo , Linfócitos T CD8-Positivos/metabolismo
14.
Nature ; 618(7963): 169-179, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225982

RESUMO

Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L1. Overlay of the substrate specificity for RNase L with the binding landscape of small molecules revealed many favourable candidate binders that might be bioactive when converted into degraders. We provide a proof of concept, designing selective degraders for the precursor to the disease-associated microRNA-155 (pre-miR-155), JUN mRNA and MYC mRNA. Thus, small-molecule RNA-targeted degradation can be leveraged to convert strong, yet inactive, binding interactions into potent and specific modulators of RNA function.


Assuntos
Endorribonucleases , MicroRNAs , RNA Mensageiro , Humanos , Genes jun/genética , Genes myc/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Endorribonucleases/química , Endorribonucleases/metabolismo , Transcriptoma
15.
Blood Cancer Discov ; 4(4): 294-317, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37070973

RESUMO

The MYC oncoprotein is activated in a broad spectrum of human malignancies and transcriptionally reprograms the genome to drive cancer cell growth. Given this, it is unclear if targeting a single effector of MYC will have therapeutic benefit. MYC activates the polyamine-hypusine circuit, which posttranslationally modifies the eukaryotic translation factor eIF5A. The roles of this circuit in cancer are unclear. Here we report essential intrinsic roles for hypusinated eIF5A in the development and maintenance of MYC-driven lymphoma, where the loss of eIF5A hypusination abolishes malignant transformation of MYC-overexpressing B cells. Mechanistically, integrating RNA sequencing, ribosome sequencing, and proteomic analyses revealed that efficient translation of select targets is dependent upon eIF5A hypusination, including regulators of G1-S phase cell-cycle progression and DNA replication. This circuit thus controls MYC's proliferative response, and it is also activated across multiple malignancies. These findings suggest the hypusine circuit as a therapeutic target for several human tumor types. SIGNIFICANCE: Elevated EIF5A and the polyamine-hypusine circuit are manifest in many malignancies, including MYC-driven tumors, and eIF5A hypusination is necessary for MYC proliferative signaling. Not-ably, this circuit controls an oncogenic translational program essential for the development and maintenance of MYC-driven lymphoma, supporting this axis as a target for cancer prevention and treatment. See related commentary by Wilson and Klein, p. 248. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Linfoma , Neoplasias , Humanos , Poliaminas/metabolismo , Proteômica
16.
Proc Natl Acad Sci U S A ; 119(45): e2214900119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36279426

RESUMO

Group 3 innate lymphoid cells (ILC3s) are RORγT+ lymphocytes that are predominately enriched in mucosal tissues and produce IL-22 and IL-17A. They are the innate counterparts of Th17 cells. While Th17 lymphocytes utilize unique metabolic pathways in their differentiation program, it is unknown whether ILC3s make similar metabolic adaptations. We employed single-cell RNA sequencing and metabolomic profiling of intestinal ILC subsets to identify an enrichment of polyamine biosynthesis in ILC3s, converging on the rate-limiting enzyme ornithine decarboxylase (ODC1). In vitro and in vivo studies demonstrated that exogenous supplementation with the polyamine putrescine or its biosynthetic substrate, ornithine, enhanced ILC3 production of IL-22. Conditional deletion of ODC1 in ILC3s impaired mouse antibacterial defense against Citrobacter rodentium infection, which was associated with a decrease in anti-microbial peptide production by the intestinal epithelium. Furthermore, in a model of anti-CD40 colitis, deficiency of ODC1 in ILC3s markedly reduced the production of IL-22 and severity of inflammatory colitis. We conclude that ILC3-intrinsic polyamine biosynthesis facilitates efficient defense against enteric pathogens as well as exacerbates autoimmune colitis, thus representing an attractive target to modulate ILC3 function in intestinal disease.


Assuntos
Colite , Infecções por Enterobacteriaceae , Camundongos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Interleucina-17 , Ornitina Descarboxilase/genética , Imunidade Inata , Putrescina , Colite/genética , Infecções por Enterobacteriaceae/genética , Células Th17/metabolismo , Ornitina , Antibacterianos , Interleucina 22
17.
Cancer Immunol Res ; 10(10): 1263-1279, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35969234

RESUMO

Chronic T-cell receptor (TCR) signaling in the tumor microenvironment is known to promote T-cell dysfunction. However, we reasoned that poorly immunogenic tumors may also compromise T cells by impairing their metabolism. To address this, we assessed temporal changes in T-cell metabolism, fate, and function in models of B-cell lymphoma driven by Myc, a promoter of energetics and repressor of immunogenicity. Increases in lymphoma burden most significantly impaired CD4+ T-cell function and promoted regulatory T cell (Treg) and Th1-cell differentiation. Metabolomic analyses revealed early reprogramming of CD4+ T-cell metabolism, reduced glucose uptake, and impaired mitochondrial function, which preceded changes in T-cell fate. In contrast, B-cell lymphoma metabolism remained robust during tumor progression. Finally, mitochondrial functions were impaired in CD4+ and CD8+ T cells in lymphoma-transplanted OT-II and OT-I transgenic mice, respectively. These findings support a model, whereby early, TCR-independent, metabolic interactions with developing lymphomas limits T cell-mediated immune surveillance.


Assuntos
Linfoma de Células B , Linfoma , Animais , Linfócitos T CD4-Positivos , Diferenciação Celular , Glucose/metabolismo , Linfoma/metabolismo , Linfoma de Células B/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Microambiente Tumoral
18.
Int J Radiat Oncol Biol Phys ; 113(3): 635-647, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35289298

RESUMO

PURPOSE: Radiation therapy (RT) is a mainstay of cancer care, and accumulating evidence suggests the potential for synergism with components of the immune response. However, few data describe the tumor immune contexture in relation to RT sensitivity. To address this challenge, we used the radiation sensitivity index (RSI) gene signature to estimate the RT sensitivity of >10,000 primary tumors and characterized their immune microenvironments in relation to the RSI. METHODS AND MATERIALS: We analyzed gene expression profiles of 10,469 primary tumors (31 types) within a prospective tissue collection protocol. The RT sensitivity of each tumor was estimated by the RSI and respective distributions were characterized. The tumor biology measured by the RSI was evaluated by differentially expressed genes combined with single sample gene set enrichment analysis. Differences in the expression of immune regulatory molecules were assessed and deconvolution algorithms were used to estimate immune cell infiltrates in relation to the RSI. A subset (n = 2368) of tumors underwent DNA sequencing for mutational frequency characterization. RESULTS: We identified a wide range of RSI values within and across various tumor types, with several demonstrating nonunimodal distributions (eg, colon, renal, lung, prostate, esophagus, pancreas, and PAM50 breast subtypes; P < .05). Across all tumor types, stratifying RSI at a tumor type-specific median identified 7148 differentially expressed genes, of which 146 were coordinate in direction. Network topology analysis demonstrates RSI measures a coordinated STAT1, IRF1, and CCL4/MIP-1ß transcriptional network. Tumors with an estimated high sensitivity to RT demonstrated distinct enrichment of interferon-associated signaling pathways and immune cell infiltrates (eg, CD8+ T cells, activated natural killer cells, M1-macrophages; q < 0.05), which was in the context of diverse expression patterns of various immunoregulatory molecules. CONCLUSIONS: This analysis describes the immune microenvironments of patient tumors in relation to the RSI gene expression signature.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias/genética , Neoplasias/radioterapia , Prognóstico , Tolerância a Radiação/genética , Transcriptoma , Microambiente Tumoral/genética
19.
Cancer Res ; 82(7): 1234-1250, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149590

RESUMO

MYC family oncoproteins are regulators of metabolic reprogramming that sustains cancer cell anabolism. Normal cells adapt to nutrient-limiting conditions by activating autophagy, which is required for amino acid (AA) homeostasis. Here we report that the autophagy pathway is suppressed by Myc in normal B cells, in premalignant and neoplastic B cells of Eµ-Myc transgenic mice, and in human MYC-driven Burkitt lymphoma. Myc suppresses autophagy by antagonizing the expression and function of transcription factor EB (TFEB), a master regulator of autophagy. Mechanisms that sustained AA pools in MYC-expressing B cells include coordinated induction of the proteasome and increases in AA transport. Reactivation of the autophagy-lysosomal pathway by TFEB disabled the malignant state by disrupting mitochondrial functions, proteasome activity, AA transport, and AA and nucleotide metabolism, leading to metabolic anergy, growth arrest, and apoptosis. This phenotype provides therapeutic opportunities to disable MYC-driven malignancies, including AA restriction and treatment with proteasome inhibitors. SIGNIFICANCE: MYC suppresses TFEB and autophagy and controls amino acid homeostasis by upregulating amino acid transport and the proteasome, and reactivation of TFEB disables the metabolism of MYC-driven tumors.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Proteínas Proto-Oncogênicas c-myc , Aminoácidos/metabolismo , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Homeostase , Humanos , Lisossomos/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética
20.
Mol Ther ; 30(6): 2315-2326, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150889

RESUMO

We have reported previously that CD33hi myeloid-derived suppressor cells (MDSCs) play a direct role in the pathogenesis of myelodysplastic syndromes (MDSs) and that their sustained activation contributes to hematopoietic and immune impairment, including modulation of PD1/PDL1. MDSCs can also limit the clinical activity of immune checkpoint inhibition in solid malignancies. We hypothesized that depletion of MDSCs may ameliorate resistance to checkpoint inhibitors and, hence, targeted them with AMV564 combined with anti-PD1 in MDS bone marrow (BM) mononuclear cells (MNCs) enhanced activation of cytotoxic T cells. AMV564 was active in vivo in a leukemia xenograft model when co-administered with healthy donor peripheral blood MNCs (PBMCs). Our findings provide a strong rationale for clinical investigation of AMV564 as a single agent or in combination with an anti-PD1 antibody and in particular for treatment of cancers resistant to checkpoint inhibitors.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Melanoma , Síndromes Mielodisplásicas , Células Supressoras Mieloides , Animais , Anticorpos Biespecíficos/farmacologia , Antineoplásicos/farmacologia , Humanos , Melanoma/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA