Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(41): e2206885119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191195

RESUMO

Global shipping accounts for 13% of global emissions of SO2, which, once oxidized to sulfate aerosol, acts to cool the planet both directly by scattering sunlight and indirectly by increasing the albedo of clouds. This cooling due to sulfate aerosol offsets some of the warming effect of greenhouse gasses and is the largest uncertainty in determining the change in the Earth's radiative balance by human activity. Ship tracks-the visible manifestation of the indirect of effect of ship emissions on clouds as quasi-linear features-have long provided an opportunity to quantify these effects. However, they have been arduous to catalog and typically studied only in particular regions for short periods of time. Using a machine-learning algorithm to automate their detection we catalog more than 1 million ship tracks to provide a global climatology. We use this to investigate the effect of stringent fuel regulations introduced by the International Maritime Organization in 2020 on their global prevalence since then, while accounting for the disruption in global commerce caused by COVID-19. We find a marked, but clearly nonlinear, decline in ship tracks globally: An 80% reduction in SO[Formula: see text] emissions causes only a 25% reduction in the number of tracks detected.


Assuntos
COVID-19 , Gases de Efeito Estufa , COVID-19/epidemiologia , Humanos , Aerossóis e Gotículas Respiratórios , Navios , Sulfatos/análise
2.
Glob Chang Biol ; 28(21): 6293-6317, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36047436

RESUMO

A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-State-Impact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation 'impact (pressure)', with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term is defined separately, allowing flexible combination into 'impact (pressure)' categories, and all are listed in an openly accessible glossary to ensure consistent use and common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from ground-based, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processes-including land degradation, desertification and ecosystem restoration-the overall framework addresses a wide and diverse range of local to international needs including those relevant to policy, socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including impact mitigation actions.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , Humanos
3.
Sci Rep ; 10(1): 8069, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398679

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 10(1): 5364, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327674

RESUMO

Satellites collecting optical data offer a unique perspective from which to observe the problem of plastic litter in the marine environment, but few studies have successfully demonstrated their use for this purpose. For the first time, we show that patches of floating macroplastics are detectable in optical data acquired by the European Space Agency (ESA) Sentinel-2 satellites and, furthermore, are distinguishable from naturally occurring materials such as seaweed. We present case studies from four countries where suspected macroplastics were detected in Sentinel-2 Earth Observation data. Patches of materials on the ocean surface were highlighted using a novel Floating Debris Index (FDI) developed for the Sentinel-2 Multi-Spectral Instrument (MSI). In all cases, floating aggregations were detectable on sub-pixel scales, and appeared to be composed of a mix of seaweed, sea foam, and macroplastics. Building first steps toward a future monitoring system, we leveraged spectral shape to identify macroplastics, and a Naïve Bayes algorithm to classify mixed materials. Suspected plastics were successfully classified as plastics with an accuracy of 86%.

5.
Ecol Lett ; 22(10): 1608-1619, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31347263

RESUMO

Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy ß-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide ß-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of ß-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.


Assuntos
Biodiversidade , Ecossistema , Floresta Úmida , Análise Espectral , Bornéu , Tecnologia de Sensoriamento Remoto , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA