Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365250

RESUMO

Biological nitrogen fixation by microbial diazotrophs can contribute significantly to nitrogen availability in non-nodulating plant species. In this study of molecular mechanisms and gene expression relating to biological nitrogen fixation, the aerobic nitrogen-fixing endophyte Burkholderia vietnamiensis, strain WPB, isolated from Populus trichocarpa served as a model for endophyte-poplar interactions. Nitrogen-fixing activity was observed to be dynamic on nitrogen-free medium with a subset of colonies growing to form robust, raised globular like structures. Secondary ion mass spectrometry (NanoSIMS) confirmed that N-fixation was uneven within the population. A fluorescent transcriptional reporter (GFP) revealed that the nitrogenase subunit nifH is not uniformly expressed across genetically identical colonies of WPB and that only ~11% of the population was actively expressing the nifH gene. Higher nifH gene expression was observed in clustered cells through monitoring individual bacterial cells using single-molecule fluorescence in situ hybridization. Through 15N2 enrichment, we identified key nitrogenous metabolites and proteins synthesized by WPB and employed targeted metabolomics in active and inactive populations. We cocultivated WPB Pnif-GFP with poplar within a RhizoChip, a synthetic soil habitat, which enabled direct imaging of microbial nifH expression within root epidermal cells. We observed that nifH expression is localized to the root elongation zone where the strain forms a unique physical interaction with the root cells. This work employed comprehensive experimentation to identify novel mechanisms regulating both biological nitrogen fixation and beneficial plant-endophyte interactions.


Assuntos
Fixação de Nitrogênio , Populus , Fixação de Nitrogênio/fisiologia , Populus/genética , Populus/metabolismo , Endófitos/genética , Oxirredutases/genética , Hibridização in Situ Fluorescente , Nitrogenase/genética , Nitrogenase/metabolismo , Nitrogênio
3.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076927

RESUMO

Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing eight new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nano-scale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal non-canonical amino acid tagging (BONCAT) we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.

4.
Sci Rep ; 13(1): 21258, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040799

RESUMO

Understanding biomineralization relies on imaging chemically heterogeneous organic-inorganic interfaces across a hierarchy of spatial scales. Further, organic minority phases are often responsible for emergent inorganic structures from the atomic arrangement of different polymorphs, to nano- and micrometer crystal dimensions, up to meter size mollusk shells. The desired simultaneous chemical and elemental imaging to identify sparse organic moieties across a large field-of-view with nanometer spatial resolution has not yet been achieved. Here, we combine nanoscale secondary ion mass spectroscopy (NanoSIMS) with spectroscopic IR s-SNOM imaging for simultaneous chemical, molecular, and elemental nanoimaging. At the example of Pinctada margaritifera mollusk shells we identify and resolve ~ 50 nm interlamellar protein sheets periodically arranged in regular ~ 600 nm intervals. The striations typically appear ~ 15 µm from the nacre-prism boundary at the interface between disordered neonacre to mature nacre. Using the polymorph distinctive IR-vibrational carbonate resonance, the nacre and prismatic regions are consistently identified as aragonite ([Formula: see text] cm-1) and calcite ([Formula: see text] cm-1), respectively. We observe previously unreported morphological features including aragonite subdomains encapsulated in extensions of the prism-covering organic membrane and regions of irregular nacre tablet formation coincident with dispersed organics. We also identify a ~ 200 nm region in the incipient nacre region with less well-defined crystal structure and integrated organics. These results show with the identification of the interlamellar protein layer how correlative nano-IR chemical and NanoSIMS elemental imaging can help distinguish different models proposed for shell growth in particular, and how organic function may relate to inorganic structure in other biomineralized systems in general.

5.
Water Res ; 238: 119990, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37146398

RESUMO

Fe-rich mobile colloids play vital yet poorly understood roles in the biogeochemical cycling of Fe in groundwater by influencing organic matter (OM) preservation and fluxes of Fe, OM, and other essential (micro-)nutrients. Yet, few studies have provided molecular detail on the structures and compositions of Fe-rich mobile colloids and factors controlling their persistence in natural groundwater. Here, we provide comprehensive new information on the sizes, molecular structures, and compositions of Fe-rich mobile colloids that accounted for up to 72% of aqueous Fe in anoxic groundwater from a redox-active floodplain. The mobile colloids are multi-phase assemblages consisting of Si-coated ferrihydrite nanoparticles and Fe(II)-OM complexes. Ferrihydrite nanoparticles persisted under both oxic and anoxic conditions, which we attribute to passivation by Si and OM. These findings suggest that mobile Fe-rich colloids generated in floodplains can persist during transport through redox-variable soils and could be discharged to surface waters. These results shed new light on their potential to transport Fe, OM, and nutrients across terrestrial-aquatic interfaces.


Assuntos
Água Subterrânea , Ferro , Ferro/química , Compostos Férricos , Solo , Coloides/química , Água Subterrânea/química , Oxirredução , Minerais/química
6.
Environ Sci Technol ; 56(3): 2021-2032, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35048708

RESUMO

As direct mediators between plants and soil, roots play an important role in metabolic responses to environmental stresses such as drought, yet these responses are vastly uncharacterized on a plant-specific level, especially for co-occurring species. Here, we aim to examine the effects of drought on root metabolic profiles and carbon allocation pathways of three tropical rainforest species by combining cutting-edge metabolomic and imaging technologies in an in situ position-specific 13C-pyruvate root-labeling experiment. Further, washed (rhizosphere-depleted) and unwashed roots were examined to test the impact of microbial presence on root metabolic pathways. Drought had a species-specific impact on the metabolic profiles and spatial distribution in Piper sp. and Hibiscus rosa sinensis roots, signifying different defense mechanisms; Piper sp. enhanced root structural defense via recalcitrant compounds including lignin, while H. rosa sinensis enhanced biochemical defense via secretion of antioxidants and fatty acids. In contrast, Clitoria fairchildiana, a legume tree, was not influenced as much by drought but rather by rhizosphere presence where carbohydrate storage was enhanced, indicating a close association with symbiotic microbes. This study demonstrates how multiple techniques can be combined to identify how plants cope with drought through different drought-tolerance strategies and the consequences of such changes on below-ground organic matter composition.


Assuntos
Secas , Raízes de Plantas , Metabolômica , Raízes de Plantas/metabolismo , Plantas , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
7.
ISME Commun ; 2(1): 52, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37938730

RESUMO

Microscopic and spectroscopic techniques are commonly applied to study microbial cells but are typically used on separate samples, resulting in population-level datasets that are integrated across different cells with little spatial resolution. To address this shortcoming, we developed a workflow that correlates several microscopic and spectroscopic techniques to generate an in-depth analysis of individual cells. By combining stable isotope probing (SIP), fluorescence in situ hybridization (FISH), scanning electron microscopy (SEM), confocal Raman microspectroscopy (Raman), and nano-scale secondary ion mass spectrometry (NanoSIMS), we illustrate how individual cells can be thoroughly interrogated to obtain information about their taxonomic identity, structure, physiology, and metabolic activity. Analysis of an artificial microbial community demonstrated that our correlative approach was able to resolve the activity of single cells using heavy water SIP in conjunction with Raman and/or NanoSIMS and establish their taxonomy and morphology using FISH and SEM. This workflow was then applied to a sample of yet uncultured multicellular magnetotactic bacteria (MMB). In addition to establishing their identity and activity, backscatter electron microscopy (BSE), NanoSIMS, and energy-dispersive X-ray spectroscopy (EDS) were employed to characterize the magnetosomes within the cells. By integrating these techniques, we demonstrate a cohesive approach to thoroughly study environmental microbes on a single-cell level.

8.
Anal Chem ; 93(2): 1016-1024, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33314923

RESUMO

We use extreme ultraviolet laser ablation and ionization time-of-flight mass spectrometry (EUV TOF) to map uranium isotopic heterogeneity at the nanoscale (≤100 nm). Using low-enriched uranium fuel pellets that were made by blending two isotopically distinct feedstocks, we show that EUV TOF can map the 235U/238U content in 100 nm-sized pixels. The two-dimensional (2D) isotope maps reveal U ratio variations in sub-microscale to ≥1 µm areas of the pellet that had not been fully exposed by microscale or bulk mass spectrometry analyses. Compared to the ratio distribution measured in a homogeneous U reference material, the ratios in the enriched pellet follow a ∼3× wider distribution. These results indicate U heterogeneity in the fuel pellet from incomplete blending of the different source materials. EUV TOF results agree well with those obtained on the same enriched pellets by nanoscale secondary ionization mass spectrometry (NanoSIMS), which reveals a comparable U isotope ratio distribution at the same spatial scale. EUV TOF's ability to assess and map isotopic heterogeneity at the nanoscale makes it a promising tool in fields such as nuclear forensics, geochemistry, and biology that could benefit from uncovering sub-microscale sources of chemical modifications.

9.
Commun Chem ; 4(1): 49, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-36697542

RESUMO

Radiation driven reactions at mineral/air interfaces are important to the chemistry of the atmosphere, but experimental constraints (e.g. simultaneous irradiation, in situ observation, and environmental control) leave process understanding incomplete. Using a custom atomic force microscope equipped with an integrated X-ray source, transformation of potassium bromide surfaces to potassium nitrate by air radiolysis species was followed directly in situ at the nanoscale. Radiolysis initiates dynamic step edge dissolution, surface composition evolution, and ultimately nucleation and heteroepitaxial growth of potassium nitrate crystallites mediated by surface diffusion at rates controlled by adsorbed water. In contrast to in situ electron microscopy and synchrotron-based imaging techniques where high radiation doses are intrinsic, our approach illustrates the value of decoupling irradiation and the basis of observation.

10.
Analyst ; 146(1): 69-74, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33163997

RESUMO

Accurate measurements of 235U enrichment within metallic nuclear fuels are essential for understanding material performance in a neutron irradiation environment, and the origin of secondary phases (e.g. uranium carbides). In this work, we analyse 235U enrichment in matrix and carbide phases in low enriched uranium alloyed with 10 wt% Mo via two chemical imaging modalities-nanoscale secondary ion mass spectrometry (NanoSIMS) and atom probe tomography (APT). Results from NanoSIMS and APT are compared to understand accuracy and utility of both approaches across length scales. NanoSIMS and APT provide consistent results, with no statistically significant difference between nominal enrichment (19.95 ± 0.14 at% 235U) and that measured for metal matrix and carbide inclusions.

11.
Sci Total Environ ; 724: 138250, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32303367

RESUMO

Although most studies of organic matter (OM) stabilization in soils have focused on adsorption to aluminosilicate and iron-oxide minerals due to their strong interactions with organic nucleophiles, stabilization within alkaline soils has been empirically correlated with exchangeable Ca. Yet the extent of competing processes within natural soils remains unclear because of inadequate characterization of soil mineralogy and OM distribution within the soil in relation to minerals, particularly in C poor alkaline soils. In this study, we employed bulk and surface-sensitive spectroscopic methods including X-ray diffraction, 57Fe-Mössbauer, and X-ray photoemission spectroscopy (XPS), and transmission electron microscopy (TEM) methods to investigate the minerology and soil organic C and N distribution on individual fine particles within an alkaline soil. Microscopy and XPS analyses demonstrated preferential sorption of Ca-containing OM onto surfaces of Fe-oxides and calcite. This result was unexpected given that the bulk combined amounts of quartz and Fe-containing feldspars of the soil constitute ~90% of total minerals and the surface atomic composition was largely Fe and Al (>10% combined) compared to Ca (4.2%). Soil sorption experiments were conducted with two siderophores, pyoverdine and enterobactin, to evaluate the adsorption of organic molecules with functional groups that strongly and preferentially bind Fe. A greater fraction of pyoverdine was adsorbed compared to enterobactin, which is smaller, less polar, and has a lower aqueous solubility. Using NanoSIMS to map the distribution of isotopically-labeled siderophores, we observed correlations with Ca and Fe, along with strong isotopic dilution with native C, indicating associations with OM coatings rather than with bare mineral surfaces. We propose a mechanism of adsorption by which organics aggregate within alkaline soils via cation bridging, favoring the stabilization of larger molecules with a greater number of nucleophilic functional groups.

12.
Talanta ; 211: 120720, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070565

RESUMO

The ability to acquire high-quality spatially-resolved mass spectrometry data is sought in many fields of study, but it often comes with high cost of instrumentation and a high level of expertise required. In addition, techniques highly regarded for isotopic analysis applications such as thermal ionization mass spectrometry (TIMS) do not have the ability to acquire spatially-resolved data. Another drawback is that for radioactive materials, which are often of interest for isotopic analysis in geochemistry and nuclear forensics applications, high-end instruments often have restrictions on radioactivity and non-dispersibility requirements. We have applied the use of a traditional microanalysis tool, the focused ion beam/scanning electron microscope (FIB/SEM), for preparation of radioactive materials either for direct analysis by spatially-resolved instruments such as secondary ion mass spectrometry (SIMS) and laser ablation inductively-coupled mass spectrometry (LA-ICP-MS), or similarly to provide some level of spatial resolution to techniques that do not inherently have that ability such as TIMS or quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). We applied this preparation technique to various uranium compounds, which was especially useful for reducing sample sizes and ensuring non-dispersibility to allow for entry into non-radiological or ultra-trace facilities. Our results show how this site-specific preparation can provide spatial context for nominally bulk techniques such as TIMS and Q-ICP-MS. In addition, the analysis of samples extracted from a uranium dioxide fuel pellet via all methods, but especially NanoSIMS and LA-ICP-MS, showed enrichment heterogeneities that are important for nuclear forensics and are of interest for fuel performance.

13.
Environ Sci Technol ; 54(3): 1493-1502, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31886668

RESUMO

Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U(IV) is essential to understand the release mechanism, yet the relevant U(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.


Assuntos
Água Subterrânea , Urânio , Poluentes Radioativos da Água , Sedimentos Geológicos , Minerais , Mineração
14.
ISME J ; 13(7): 1865-1877, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30886318

RESUMO

Microbial community succession is a fundamental process that affects underlying functions of almost all ecosystems; yet the roles and fates of the most abundant colonizers are often poorly understood. Does early abundance spur long term persistence? How do deterministic and stochastic processes influence the ecological contribution of colonizers? We performed a succession experiment within a hypersaline ecosystem to investigate how different processes contributed to the turnover of founder species. Bacterial and eukaryotic colonizers were identified during primary succession and tracked through a defined, 79-day biofilm maturation period using 16S and 18S rRNA gene sequencing in combination with high resolution imaging that utilized stable isotope tracers to evaluate successional patterns of primary producers and nitrogen fixers. The majority of the founder species did not maintain high abundance throughout succession. Species replacement (versus loss) was the dominant process shaping community succession. We also asked if different ecological processes acted on bacteria versus Eukaryotes during succession and found deterministic and stochastic forces corresponded more with microeukaryote and bacterial colonization, respectively. Our results show that taxa and functions belonging to different kingdoms, which share habitat in the tight spatial confines of a biofilm, were influenced by different ecological processes and time scales of succession.


Assuntos
Bactérias/classificação , Biofilmes , Microbiota , Bactérias/genética , Ecologia , Processos Estocásticos
15.
Chemistry ; 25(4): 993-996, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30462865

RESUMO

Fluorine has been recognized to selectively stabilize anatase titanium dioxide (TiO2 ) crystal facets; however, resolving its physical location at the nanometer scale remains empirically elusive. Here, we provide direct experimental evidence to reveal the spatial distribution of fluorine on single truncated anatase bipyramids (TABs) using nanoscale secondary ion mass spectrometry (NanoSIMS). Fluorine was found to preferentially adsorb on the (001) facet compared to the (101) facet of TABs. Moreover, NanoSIMS depth profiling exhibited a significantly different fluorine distribution between these two facets in the near-surface region, illustrating the essential role of lattice-doped fluorine in the anisotropic crystal growth of TABs.

16.
ACS Cent Sci ; 4(11): 1477-1484, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30555899

RESUMO

In nanomedicine, determining the spatial distribution of particles and drugs, together and apart, at high resolution within tissues, remains a major challenge because each must have a different label or detectable feature that can be observed with high sensitivity and resolution. We prepared nanoparticles capable of enzyme-directed assembly of particle therapeutics (EDAPT), containing an analogue of the Pt(II)-containing drug oxaliplatin, an 15N-labeled monomer in the hydrophobic block of the backbone of the polymer, the near-infrared dye Cy5.5, and a peptide that is a substrate for tumor metalloproteinases in the hydrophilic block. When these particles reach an environment rich in tumor associated proteases, the hydrophilic peptide substrate is cleaved, causing the particles to accumulate through a morphology transition, locking them in the tumor extracellular matrix. To evaluate the distribution of drug and EDAPT carrier in vivo, the localization of the isotopically labeled polymer backbone was compared to that of Pt by nanoscale secondary ion mass spectrometry (NanoSIMS). The correlation of NanoSIMS with super-resolution fluorescence microscopy revealed the release of the drug from the nanocarrier and colocalization with cellular DNA within tumor tissue. The results confirmed the dependence of particle accumulation and Pt(II) drug delivery on the presence of a Matrix Metalloproteinase (MMP) substrate and demonstrated antitumor activity. We conclude that these techniques are powerful for the elucidation of the localization of cargo and carrier, and enable a high-resolution assessment of their performance following in vivo delivery.

17.
Nat Commun ; 9(1): 4793, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451836

RESUMO

In the Amazon basin, particles containing mixed sodium salts are routinely observed and are attributed to marine aerosols transported from the Atlantic Ocean. Using chemical imaging analysis, we show that, during the wet season, fungal spores emitted by the forest biosphere contribute at least 30% (by number) to sodium salt particles in the central Amazon basin. Hydration experiments indicate that sodium content in fungal spores governs their growth factors. Modeling results suggest that fungal spores account for ~69% (31-95%) of the total sodium mass during the wet season and that their fractional contribution increases during nighttime. Contrary to common assumptions that sodium-containing aerosols originate primarily from marine sources, our results suggest that locally-emitted fungal spores contribute substantially to the number and mass of coarse particles containing sodium. Hence, their role in cloud formation and contribution to salt cycles and the terrestrial ecosystem in the Amazon basin warrant further consideration.


Assuntos
Material Particulado/análise , Sódio/análise , Esporos Fúngicos/química , Aerossóis , Brasil , Ecossistema , Floresta Úmida , Estações do Ano
18.
Environ Microbiol ; 20(6): 2178-2194, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29687554

RESUMO

Phenazine-1-carboxylic acid (PCA) is produced by rhizobacteria in dryland but not in irrigated wheat fields of the Pacific Northwest, USA. PCA promotes biofilm development in bacterial cultures and bacterial colonization of wheat rhizospheres. However, its impact upon biofilm development has not been demonstrated in the rhizosphere, where biofilms influence terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Furthermore, the relationships between soil moisture and the rates of PCA biosynthesis and degradation have not been established. In this study, expression of PCA biosynthesis genes was upregulated relative to background transcription, and persistence of PCA was slightly decreased in dryland relative to irrigated wheat rhizospheres. Biofilms in dryland rhizospheres inoculated with the PCA-producing (PCA+ ) strain Pseudomonas synxantha 2-79RN10 were more robust than those in rhizospheres inoculated with an isogenic PCA-deficient (PCA- ) mutant strain. This trend was reversed in irrigated rhizospheres. In dryland PCA+ rhizospheres, the turnover of 15 N-labelled rhizobacterial biomass was slower than in the PCA- and irrigated PCA+ treatments, and incorporation of bacterial 15 N into root cell walls was observed in multiple treatments. These results indicate that PCA promotes biofilm development in dryland rhizospheres, and likely influences crop nutrition and soil health in dryland wheat fields.


Assuntos
Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Solo/química , Triticum/microbiologia , Biofilmes/crescimento & desenvolvimento , Biomassa , Fenazinas/farmacologia , Rizosfera , Microbiologia do Solo
19.
Biointerphases ; 13(3): 03B301, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28954518

RESUMO

Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.


Assuntos
Biologia/métodos , Espectrometria de Massa de Íon Secundário/métodos , Guias de Prática Clínica como Assunto , Espectrometria de Massa de Íon Secundário/estatística & dados numéricos
20.
Nat Commun ; 8: 15441, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504274

RESUMO

The relationship between seawater temperature and the average Mg/Ca ratios in planktic foraminifera is well established, providing an essential tool for reconstructing past ocean temperatures. However, many species display alternating high and low Mg-bands within their shell walls that cannot be explained by temperature alone. Recent experiments demonstrate that intrashell Mg variability in Orbulina universa, which forms a spherical terminal shell, is paced by the diurnal light/dark cycle. Whether Mg-heterogeneity is also diurnally paced in species with more complex shell morphologies is unknown. Here we show that high Mg/Ca-calcite forms at night in cultured specimens of the multi-chambered species Neogloboquadrina dutertrei. Our results demonstrate that N. dutertrei adds a significant amount of calcite, and nearly all Mg-bands, after the final chamber forms. These results have implications for interpreting patterns of calcification in N. dutertrei and suggest that diurnal Mg-banding is an intrinsic component of biomineralization in planktic foraminifera.


Assuntos
Carbonato de Cálcio/química , Foraminíferos/fisiologia , Magnésio/química , Água do Mar , Calcificação Fisiológica , Oceanos e Mares , Temperatura , Oligoelementos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA