Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
BMJ Open ; 14(6): e080746, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834317

RESUMO

INTRODUCTION: Autism is a common neurodevelopmental condition with a complex genetic aetiology that includes contributions from monogenic and polygenic factors. Many autistic people have unmet healthcare needs that could be served by genomics-informed research and clinical trials. The primary aim of the European Autism GEnomics Registry (EAGER) is to establish a registry of participants with a diagnosis of autism or an associated rare genetic condition who have undergone whole-genome sequencing. The registry can facilitate recruitment for future clinical trials and research studies, based on genetic, clinical and phenotypic profiles, as well as participant preferences. The secondary aim of EAGER is to investigate the association between mental and physical health characteristics and participants' genetic profiles. METHODS AND ANALYSIS: EAGER is a European multisite cohort study and registry and is part of the AIMS-2-TRIALS consortium. EAGER was developed with input from the AIMS-2-TRIALS Autism Representatives and representatives from the rare genetic conditions community. 1500 participants with a diagnosis of autism or an associated rare genetic condition will be recruited at 13 sites across 8 countries. Participants will be given a blood or saliva sample for whole-genome sequencing and answer a series of online questionnaires. Participants may also consent to the study to access pre-existing clinical data. Participants will be added to the EAGER registry and data will be shared externally through established AIMS-2-TRIALS mechanisms. ETHICS AND DISSEMINATION: To date, EAGER has received full ethical approval for 11 out of the 13 sites in the UK (REC 23/SC/0022), Germany (S-375/2023), Portugal (CE-085/2023), Spain (HCB/2023/0038, PIC-164-22), Sweden (Dnr 2023-06737-01), Ireland (230907) and Italy (CET_62/2023, CEL-IRCCS OASI/24-01-2024/EM01, EM 2024-13/1032 EAGER). Findings will be disseminated via scientific publications and conferences but also beyond to participants and the wider community (eg, the AIMS-2-TRIALS website, stakeholder meetings, newsletters).


Assuntos
Transtorno Autístico , Genômica , Sistema de Registros , Sequenciamento Completo do Genoma , Humanos , Europa (Continente) , Transtorno Autístico/genética , Estudos de Coortes , Estudos Multicêntricos como Assunto , Projetos de Pesquisa , Criança , Masculino
2.
Nat Med ; 29(7): 1671-1680, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365347

RESUMO

While over 100 genes have been associated with autism, little is known about the prevalence of variants affecting them in individuals without a diagnosis of autism. Nor do we fully appreciate the phenotypic diversity beyond the formal autism diagnosis. Based on data from more than 13,000 individuals with autism and 210,000 undiagnosed individuals, we estimated the odds ratios for autism associated to rare loss-of-function (LoF) variants in 185 genes associated with autism, alongside 2,492 genes displaying intolerance to LoF variants. In contrast to autism-centric approaches, we investigated the correlates of these variants in individuals without a diagnosis of autism. We show that these variants are associated with a small but significant decrease in fluid intelligence, qualification level and income and an increase in metrics related to material deprivation. These effects were larger for autism-associated genes than in other LoF-intolerant genes. Using brain imaging data from 21,040 individuals from the UK Biobank, we could not detect significant differences in the overall brain anatomy between LoF carriers and non-carriers. Our results highlight the importance of studying the effect of the genetic variants beyond categorical diagnosis and the need for more research to understand the association between these variants and sociodemographic factors, to best support individuals carrying these variants.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Fenótipo , Heterozigoto , Encéfalo
3.
Mol Psychiatry ; 28(5): 2158-2169, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36991132

RESUMO

Individuals with autism spectrum disorder (henceforth referred to as autism) display significant variation in clinical outcome. For instance, across age, some individuals' adaptive skills naturally improve or remain stable, while others' decrease. To pave the way for 'precision-medicine' approaches, it is crucial to identify the cross-sectional and, given the developmental nature of autism, longitudinal neurobiological (including neuroanatomical and linked genetic) correlates of this variation. We conducted a longitudinal follow-up study of 333 individuals (161 autistic and 172 neurotypical individuals, aged 6-30 years), with two assessment time points separated by ~12-24 months. We collected behavioural (Vineland Adaptive Behaviour Scale-II, VABS-II) and neuroanatomical (structural magnetic resonance imaging) data. Autistic participants were grouped into clinically meaningful "Increasers", "No-changers", and "Decreasers" in adaptive behaviour (based on VABS-II scores). We compared each clinical subgroup's neuroanatomy (surface area and cortical thickness at T1, ∆T (intra-individual change) and T2) to that of the neurotypicals. Next, we explored the neuroanatomical differences' potential genomic associates using the Allen Human Brain Atlas. Clinical subgroups had distinct neuroanatomical profiles in surface area and cortical thickness at baseline, neuroanatomical development, and follow-up. These profiles were enriched for genes previously associated with autism and for genes previously linked to neurobiological pathways implicated in autism (e.g. excitation-inhibition systems). Our findings suggest that distinct clinical outcomes (i.e. intra-individual change in clinical profiles) linked to autism core symptoms are associated with atypical cross-sectional and longitudinal, i.e. developmental, neurobiological profiles. If validated, our findings may advance the development of interventions, e.g. targeting mechanisms linked to relatively poorer outcomes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Seguimentos , Neuroanatomia , Estudos Transversais
4.
Eur J Med Genet ; 66(5): 104732, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36822569

RESUMO

SHANK3-related Phelan-McDermid syndrome (PMS) is caused by a loss of the distal part of chromosome 22, including SHANK3, or by a pathological SHANK3 variant. There is an important genetic and phenotypic diversity among patients who can present with developmental delay, language impairments, autism, epilepsy, and other symptoms. SHANK3, encoding a synaptic scaffolding protein, is deleted in the majority of patients with PMS and is considered a major gene involved in the neurological impairments of the patients. However, differences in deletion size can influence clinical features, and in some rare cases, deletions at the 22q13 locus in individuals with SHANK3-unrelated PMS do not encompass SHANK3. These individuals with SHANK3-unrelated PMS still display a PMS-like phenotype. This suggests the participation of other 22q13 genes in the pathogenesis of PMS. Here, we review the biological function and potential implication in PMS symptoms of 110 genes located in the 22q13 region, focusing on 35 genes with evidence for association with neurodevelopmental disorders, including 13 genes for epilepsy and 11 genes for microcephaly and/or macrocephaly. Our review is restricted to the 22q13 region, but future large-scale studies using whole genome sequencing and deep-phenotyping are warranted to develop predictive models of clinical trajectories and to target specific medical and educational care for each individual with PMS.


Assuntos
Transtornos Cromossômicos , Humanos , Transtornos Cromossômicos/patologia , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Fenótipo
5.
Autism Res ; 16(2): 364-378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464763

RESUMO

As an integral part of autism spectrum symptoms, sensory processing issues including both hypo and hyper sensory sensitivities. These sensory specificities may result from an excitation/inhibition imbalance with a poorly understood of their level of convergence with genetic alterations in GABA-ergic and glutamatergic pathways. In our study, we aimed to characterize the hypo/hyper-sensory profile among autistic individuals. We then explored its link with the burden of deleterious mutations in a subset of individuals with available whole-genome sequencing data. To characterize the hypo/hyper-sensory profile, the differential Short Sensory Profile (dSSP) was defined as a normalized and centralized hypo/hypersensitivity ratio from the Short Sensory Profile (SSP). Including 1136 participants (533 autistic individuals, 210 first-degree relatives, and 267 controls) from two independent study samples (PARIS and LEAP), we observed a statistically significant dSSP mean difference between autistic individuals and controls, driven mostly by a high dSSP variability, with an intermediated profile represented by relatives. Our genetic analysis tended to associate the dSSP and the hyposensitivity with mutations of the GABAergic pathway. The major limitation was the dSSP difficulty to discriminate subjects with a similar quantum of hypo- and hyper-sensory symptoms to those with no such symptoms, resulting both in a similar ratio score of 0. However, the dSSP could be a relevant clinical score, and combined with additional sensory descriptions, genetics and endophenotypic substrates, will improve the exploration of the underlying neurobiological mechanisms of sensory processing differences in autism spectrum.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtornos Globais do Desenvolvimento Infantil , Criança , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Sensação , Percepção
6.
Sci Transl Med ; 14(658): eabf8987, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976994

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties in social communication, but also great heterogeneity. To offer individualized medicine approaches, we need to better target interventions by stratifying autistic people into subgroups with different biological profiles and/or prognoses. We sought to validate neural responses to faces as a potential stratification factor in ASD by measuring neural (electroencephalography) responses to faces (critical in social interaction) in N = 436 children and adults with and without ASD. The speed of early-stage face processing (N170 latency) was on average slower in ASD than in age-matched controls. In addition, N170 latency was associated with responses to faces in the fusiform gyrus, measured with functional magnetic resonance imaging, and polygenic scores for ASD. Within the ASD group, N170 latency predicted change in adaptive socialization skills over an 18-month follow-up period; data-driven clustering identified a subgroup with slower brain responses and poor social prognosis. Use of a distributional data-driven cutoff was associated with predicted improvements of power in simulated clinical trials targeting social functioning. Together, the data provide converging evidence for the utility of the N170 as a stratification factor to identify biologically and prognostically defined subgroups in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Potenciais Evocados/fisiologia , Humanos , Fenótipo , Percepção Social
7.
Nat Genet ; 54(9): 1293-1304, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654973

RESUMO

The substantial phenotypic heterogeneity in autism limits our understanding of its genetic etiology. To address this gap, here we investigated genetic differences between autistic individuals (nmax = 12,893) based on core and associated features of autism, co-occurring developmental disabilities and sex. We conducted a comprehensive factor analysis of core autism features in autistic individuals and identified six factors. Common genetic variants were associated with the core factors, but de novo variants were not. We found that higher autism polygenic scores (PGS) were associated with lower likelihood of co-occurring developmental disabilities in autistic individuals. Furthermore, in autistic individuals without co-occurring intellectual disability (ID), autism PGS are overinherited by autistic females compared to males. Finally, we observed higher SNP heritability for autistic males and for autistic individuals without ID. Deeper phenotypic characterization will be critical in determining how the complex underlying genetics shape cognition, behavior and co-occurring conditions in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Cognição , Feminino , Humanos , Deficiência Intelectual/genética , Masculino
8.
Neuroimage ; 255: 119171, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35413445

RESUMO

MRI has been extensively used to identify anatomical and functional differences in Autism Spectrum Disorder (ASD). Yet, many of these findings have proven difficult to replicate because studies rely on small cohorts and are built on many complex, undisclosed, analytic choices. We conducted an international challenge to predict ASD diagnosis from MRI data, where we provided preprocessed anatomical and functional MRI data from > 2,000 individuals. Evaluation of the predictions was rigorously blinded. 146 challengers submitted prediction algorithms, which were evaluated at the end of the challenge using unseen data and an additional acquisition site. On the best algorithms, we studied the importance of MRI modalities, brain regions, and sample size. We found evidence that MRI could predict ASD diagnosis: the 10 best algorithms reliably predicted diagnosis with AUC∼0.80 - far superior to what can be currently obtained using genotyping data in cohorts 20-times larger. We observed that functional MRI was more important for prediction than anatomical MRI, and that increasing sample size steadily increased prediction accuracy, providing an efficient strategy to improve biomarkers. We also observed that despite a strong incentive to generalise to unseen data, model development on a given dataset faces the risk of overfitting: performing well in cross-validation on the data at hand, but not generalising. Finally, we were able to predict ASD diagnosis on an external sample added after the end of the challenge (EU-AIMS), although with a lower prediction accuracy (AUC=0.72). This indicates that despite being based on a large multisite cohort, our challenge still produced biomarkers fragile in the face of dataset shifts.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Biomarcadores , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos
9.
Am J Psychiatry ; 179(5): 336-349, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331004

RESUMO

OBJECTIVE: Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition that is associated with significant difficulties in adaptive behavior and variation in clinical outcomes across the life span. Some individuals with ASD improve, whereas others may not change significantly, or regress. Hence, the development of "personalized medicine" approaches is essential. However, this requires an understanding of the biological processes underpinning differences in clinical outcome, at both the individual and subgroup levels, across the lifespan. METHODS: The authors conducted a longitudinal follow-up study of 483 individuals (204 with ASD and 279 neurotypical individuals, ages 6-30 years), with assessment time points separated by ∼12-24 months. Data collected included behavioral data (Vineland Adaptive Behavior Scale-II), neuroanatomical data (structural MRI), and genetic data (DNA). Individuals with ASD were grouped into clinically meaningful "increasers," "no-changers," and "decreasers" in adaptive behavior. First, the authors compared neuroanatomy between outcome groups. Next, they examined whether deviations from the neurotypical neuroanatomical profile were associated with outcome at the individual level. Finally, they explored the observed neuroanatomical differences' potential genetic underpinnings. RESULTS: Outcome groups differed in neuroanatomical features (cortical volume and thickness, surface area), including in "social brain" regions previously implicated in ASD. Also, deviations of neuroanatomical features from the neurotypical profile predicted outcome at the individual level. Moreover, neuroanatomical differences were associated with genetic processes relevant to neuroanatomical phenotypes (e.g., synaptic development). CONCLUSIONS: This study demonstrates, for the first time, that variation in clinical (adaptive) outcome is associated with both group- and individual-level variation in anatomy of brain regions enriched for genes relevant to ASD. This may facilitate the move toward better targeted/precision medicine approaches.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adaptação Psicológica , Transtorno do Espectro Autista/genética , Seguimentos , Humanos , Imageamento por Ressonância Magnética
10.
Am J Psychiatry ; 179(3): 242-254, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34503340

RESUMO

OBJECTIVE: Autism spectrum disorder (ASD) is accompanied by highly individualized neuroanatomical deviations that potentially map onto distinct genotypes and clinical phenotypes. This study aimed to link differences in brain anatomy to specific biological pathways to pave the way toward targeted therapeutic interventions. METHODS: The authors examined neurodevelopmental differences in cortical thickness and their genomic underpinnings in a large and clinically diverse sample of 360 individuals with ASD and 279 typically developing control subjects (ages 6-30 years) within the EU-AIMS Longitudinal European Autism Project (LEAP). The authors also examined neurodevelopmental differences and their potential pathophysiological mechanisms between clinical ASD subgroups that differed in the severity and pattern of sensory features. RESULTS: In addition to significant between-group differences in "core" ASD brain regions (i.e., fronto-temporal and cingulate regions), individuals with ASD manifested as neuroanatomical outliers within the neurotypical cortical thickness range in a wider neural system, which was enriched for genes known to be implicated in ASD on the genetic and/or transcriptomic level. Within these regions, the individuals' total (i.e., accumulated) degree of neuroanatomical atypicality was significantly correlated with higher polygenic scores for ASD and other psychiatric conditions, and it scaled with measures of symptom severity. Differences in cortical thickness deviations were also associated with distinct sensory subgroups, especially in brain regions expressing genes involved in excitatory rather than inhibitory neurotransmission. CONCLUSIONS: The study findings corroborate the link between macroscopic differences in brain anatomy and the molecular mechanisms underpinning heterogeneity in ASD, and provide future targets for stratification and subtyping.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico , Encéfalo , Genômica , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética
11.
Mol Cell Neurosci ; 113: 103623, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932580

RESUMO

The genetics of neurodevelopmental disorders (NDD) has made tremendous progress during the last few decades with the identification of more than 1,500 genes associated with conditions such as intellectual disability and autism. The functional roles of these genes are currently studied to uncover the biological mechanisms influencing the clinical outcome of the mutation carriers. To integrate the data, several databases and curated gene lists have been generated. Here, we provide an overview of the main databases focusing on the genetics of NDD, that are widely used by the medical and scientific communities, and extract a list of high confidence NDD genes (HC-NDD). This gene set can be used as a first filter for interpreting large scale omics dataset or for diagnostic purposes. Overall HC-NDD genes (N = 1,586) are expressed at very early stages of fetal brain development and enriched in several biological pathways such as chromosome organization, cell cycle, metabolism and synaptic function. Among those HC-NDD genes, 204 (12,9%) are listed in the synaptic gene ontology SynGO and are enriched in genes expressed after birth in the cerebellum and the cortex of the human brain. Finally, we point at several limitations regarding the relatively poor standardized information available, especially on the carriers of the mutations. Progress on the phenotypic characterization and genetic profiling of the carriers will be crucial to improve our knowledge on the biological mechanisms and on risk and protective factors for NDD.


Assuntos
Transtorno Autístico/genética , Bases de Dados Genéticas , Deficiências do Desenvolvimento/genética , Transtorno Autístico/metabolismo , Deficiências do Desenvolvimento/metabolismo , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Fenótipo , Mapas de Interação de Proteínas
12.
Transl Psychiatry ; 11(1): 23, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414449

RESUMO

Hyperserotonemia is the most replicated biochemical abnormality associated with autism spectrum disorders (ASD). However, previous studies of serotonin synthesis, catabolism, and transport have not elucidated the mechanisms underlying this hyperserotonemia. Here we investigated serotonin sulfation by phenol sulfotransferases (PST) in blood samples from 97 individuals with ASD and their first-degree relatives (138 parents and 56 siblings), compared with 106 controls. We report a deficient activity of both PST isoforms (M and P) in platelets from individuals with ASD (35% and 78% of patients, respectively), confirmed in autoptic tissues (9 pineal gland samples from individuals with ASD-an important source of serotonin). Platelet PST-M deficiency was strongly associated with hyperserotonemia in individuals with ASD. We then explore genetic or pharmacologic modulation of PST activities in mice: variations of PST activities were associated with marked variations of blood serotonin, demonstrating the influence of the sulfation pathway on serotonemia. We also conducted in 1645 individuals an extensive study of SULT1A genes, encoding PST and mapping at highly polymorphic 16p11.2 locus, which did not reveal an association between copy number or single nucleotide variations and PST activity, blood serotonin or the risk of ASD. In contrast, our broader assessment of sulfation metabolism in ASD showed impairments of other sulfation-related markers, including inorganic sulfate, heparan-sulfate, and heparin sulfate-sulfotransferase. Our study proposes for the first time a compelling mechanism for hyperserotonemia, in a context of global impairment of sulfation metabolism in ASD.


Assuntos
Transtorno do Espectro Autista , Animais , Arilsulfotransferase/genética , Transtorno do Espectro Autista/genética , Humanos , Camundongos , Serotonina , Irmãos , Sulfotransferases/genética
13.
Commun Biol ; 2: 328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508503

RESUMO

The core diagnostic criteria for autism comprise two symptom domains - social and communication difficulties, and unusually repetitive and restricted behaviour, interests and activities. There is some evidence to suggest that these two domains are dissociable, though this hypothesis has not yet been tested using molecular genetics. We test this using a genome-wide association study (N = 51,564) of a non-social trait related to autism, systemising, defined as the drive to analyse and build systems. We demonstrate that systemising is heritable and genetically correlated with autism. In contrast, we do not identify significant genetic correlations between social autistic traits and systemising. Supporting this, polygenic scores for systemising are significantly and positively associated with restricted and repetitive behaviour but not with social difficulties in autistic individuals. These findings strongly suggest that the two core domains of autism are genetically dissociable, and point at how to fractionate the genetics of autism.


Assuntos
Transtorno Autístico/patologia , Comportamento Social , Transtorno Autístico/genética , Transtorno Autístico/psicologia , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fenótipo , Reprodutibilidade dos Testes
14.
NPJ Genom Med ; 4: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675382

RESUMO

The number of genes associated with autism is increasing, but few studies have been performed on epidemiological cohorts and in isolated populations. Here, we investigated 357 individuals from the Faroe Islands including 36 individuals with autism, 136 of their relatives and 185 non-autism controls. Data from SNP array and whole exome sequencing revealed that individuals with autism had a higher burden of rare exonic copy-number variants altering autism associated genes (deletions (p = 0.0352) or duplications (p = 0.0352)), higher inbreeding status (p = 0.023) and a higher load of rare homozygous deleterious variants (p = 0.011) compared to controls. Our analysis supports the role of several genes/loci associated with autism (e.g., NRXN1, ADNP, 22q11 deletion) and identified new truncating (e.g., GRIK2, ROBO1, NINL, and IMMP2L) or recessive deleterious variants (e.g., KIRREL3 and CNTNAP2) affecting autism-associated genes. It also revealed three genes involved in synaptic plasticity, RIMS4, KALRN, and PLA2G4A, carrying de novo deleterious variants in individuals with autism without intellectual disability. In summary, our analysis provides a better understanding of the genetic architecture of autism in isolated populations by highlighting the role of both common and rare gene variants and pointing at new autism-risk genes. It also indicates that more knowledge about how multiple genetic hits affect neuronal function will be necessary to fully understand the genetic architecture of autism.

15.
Brief Bioinform ; 18(3): 394-402, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27178992

RESUMO

The era of genome-wide association studies (GWAS) has led to the discovery of numerous genetic variants associated with disease. Better understanding of whether these or other variants interact leading to differential risk compared with individual marker effects will increase our understanding of the genetic architecture of disease, which may be investigated using the family-based study design. We present M-TDT (the multi-locus transmission disequilibrium test), a tool for detecting family-based multi-locus multi-allelic effects for qualitative or quantitative traits, extended from the original transmission disequilibrium test (TDT). Tests to handle the comparison between additive and epistatic models, lack of independence between markers and multiple offspring are described. Performance of M-TDT is compared with a multifactor dimensionality reduction (MDR) approach designed for investigating families in the hypothesis-free genome-wide setting (the multifactor dimensionality reduction pedigree disequilibrium test, MDR-PDT). Other methods derived from the TDT or MDR to investigate genetic interaction in the family-based design are also discussed. The case of three independent biallelic loci is illustrated using simulations for one- to three-locus alternative hypotheses. M-TDT identified joint-locus effects and distinguished effectively between additive and epistatic models. We showed a practical example of M-TDT based on three genes already known to be implicated in malaria susceptibility. Our findings demonstrate the value of M-TDT in a hypothesis-driven context to test for multi-way epistasis underlying common disease etiology, whereas MDR-PDT-based methods are more appropriate in a hypothesis-free genome-wide setting.


Assuntos
Epistasia Genética , Genoma , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Modelos Genéticos , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA