Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118850, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611518

RESUMO

Accurate soil organic carbon models are key to understand the mechanisms governing carbon sequestration in soil and to help develop targeted management strategies to carbon budget. The accuracy and reliability of soil organic carbon (SOC) models remains strongly limited by incorrect initialization of the conceptual kinetic pools and lack of stringent model evaluation using time-series datasets. Notably, due to legacy effects of management and land use change, the traditional spin-up approach for initial allocation of SOC among kinetic pools can bring substantial uncertainties in predicting the evolution of SOC stocks. The AMG model can fulfill these conditions as it is a parsimonious yet accurate SOC model using widely-available input data. In this study, we first evaluated the performance of AMGv2 before and after optimizing the potential mineralization rate (k0) of SOC stock following a leave-one-site-out cross-validation based on 24 long-term field experiments (LTEs) in the Southwest of China. Then, we used Rock-Eval® thermal analysis results as input variables in the PARTYSOC machine learning model to estimate the initial stable SOC fraction (CS/C0) for the 14 LTEs where soil samples were available. The results showed that initializing the CS/C0 ratio using PARTYSOC combined with the optimized k0 further improved the accuracy of model simulations (R2 = 0.87, RMSE = 0.25, d = 0.90). Combining average measured CS/C0 and k0 optimization across all 24 LTEs also improved the model predictive capability by 25% compared to using default parameterization, thus suggesting promising avenue for upscaling model applications at the regional level where only a few measurement data on SOC stability can be available. In conclusion, the new version of the AMG model developed in the Tuojiang River Basin context exhibits excellent performance. This result paves the way for further calibration and validation of the AMG model in a wider set of contexts, with the potential to significantly improve confidence in SOC predictions in croplands over regional scales.


Assuntos
Carbono , Solo , Carbono/análise , Rios , Reprodutibilidade dos Testes , Produtos Agrícolas , Sequestro de Carbono , China , Agricultura/métodos
2.
Glob Chang Biol ; 27(4): 904-928, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33159712

RESUMO

Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate-change studies. It is imperative to increase confidence in long-term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom. The decay of SOC in these plots has been monitored for decades since the last inputs of plant material, providing the opportunity to test decomposition without the continuous input of new organic material. The models were run independently over multi-year simulation periods (from 28 to 80 years) in a blind test with no calibration (Bln) and with the following three calibration scenarios, each providing different levels of information and/or allowing different levels of model fitting: (a) calibrating decomposition parameters separately at each experimental site (Spe); (b) using a generic, knowledge-based, parameterization applicable in the Central European region (Gen); and (c) using a combination of both (a) and (b) strategies (Mix). We addressed uncertainties from different modelling approaches with or without spin-up initialization of SOC. Changes in the multi-model median (MMM) of SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) of 39.2 (±15.5) Mg C/ha compared to the observed mean of 36.0 (±19.7) Mg C/ha (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5 ± 16.7 Mg C/ha) and Spe (36.8 ± 19.8 Mg C/ha) provided only marginal gains in accuracy, but modellers would need to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider applicability of models.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , França , Federação Russa , Suécia , Incerteza , Reino Unido
3.
Nanotoxicology ; 10(2): 245-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26152687

RESUMO

The toxicity of CeO2 NPs on an experimental freshwater ecosystem was studied in mesocosm, with a focus being placed on the higher trophic level, i.e. the carnivorous amphibian species Pleurodeles waltl. The system comprised species at three trophic levels: (i) bacteria, fungi and diatoms, (ii) Chironomus riparius larvae as primary consumers and (iii) Pleurodeles larvae as secondary consumers. NP contamination consisted of repeated additions of CeO2 NPs over 4 weeks, to obtain a final concentration of 1 mg/L. NPs were found to settle and accumulate in the sediment. No effects were observed on litter decomposition or associated fungal biomass. Changes in bacterial communities were observed from the third week of NP contamination. Morphological changes in CeO2 NPs were observed at the end of the experiment. No toxicity was recorded in chironomids, despite substantial NP accumulation (265.8 ± 14.1 mg Ce/kg). Mortality (35.3 ± 6.8%) and a mean Ce concentration of 13.5 ± 3.9 mg/kg were reported for Pleurodeles. Parallel experiments were performed on Pleurodeles to determine toxicity pathways: no toxicity was observed by direct or dietary exposures, although Ce concentrations almost reached 100 mg/kg. In view of these results, various toxicity mechanisms are proposed and discussed. The toxicity observed on Pleurodeles in mesocosm may be indirect, due to microorganism's interaction with CeO2 NPs, or NP dissolution could have occurred in mesocosm due to the structural complexity of the biological environment, resulting in toxicity to Pleurodeles. This study strongly supports the importance of ecotoxicological assessment of NPs under environmentally relevant conditions, using complex biological systems.


Assuntos
Cério/toxicidade , Ecotoxicologia/métodos , Cadeia Alimentar , Água Doce/microbiologia , Nanopartículas/toxicidade , Animais , Bactérias/efeitos dos fármacos , Biomassa , Cério/química , Chironomidae/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Fungos/efeitos dos fármacos , Larva/efeitos dos fármacos , Nanopartículas/química , Pleurodeles
4.
Environ Pollut ; 202: 196-204, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25839943

RESUMO

In the present study, we conducted a 2 week microcosm experiment with a natural freshwater bacterial community to assess the effects of titanium dioxide nanoparticles (TiO2-NPs) at various concentrations (0, 1, 10 and 100 mg/L) on planktonic and sessile bacteria under dark conditions. Results showed an increase of planktonic bacterial abundance at the highest TiO2-NP concentration, concomitant with a decrease from that of sessile bacteria. Bacterial assemblages were most affected by the 100 mg/L TiO2-NP exposure and overall diversity was found to be lower for planktonic bacteria and higher for sessile bacteria at this concentration. In both compartments, a 100 mg/L TiO2-NPs exposure induced a decrease in the ratio between the Betaproteobacteria and Bacteroidetes. For planktonic communities, a decrease of Comamonadaceae was observed concomitant with an increase of Oxalobacteraceae and Cytophagaceae (especially Emticicia). For sessile communities, results showed a strong decrease of Betaproteobacteria and particularly of Comamonadaceae.


Assuntos
Monitoramento Ambiental/métodos , Nanopartículas , Plâncton/efeitos dos fármacos , Rios , Titânio/toxicidade , Microbiologia da Água , Betaproteobacteria/efeitos dos fármacos , Comamonadaceae/efeitos dos fármacos , França , Consórcios Microbianos/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Rios/química , Rios/microbiologia
5.
Environ Pollut ; 186: 67-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361567

RESUMO

Decline in pH, elevated aluminium (Al) concentrations, and base cations depletion often covary in acidified headwater streams. These parameters are considered as the main factors reducing microbial activities involved in detritus processing, but their individual and interactive effects are still unclear. In addition to its direct toxicity, Al can also reduce the bioavailability of phosphorus (P) in ecosystems through the formation of stable chemical complexes. A three week microcosm experiment was carried out in acid conditions to assess the interactive effects of Al (three levels: 0, 200, and 1,000 µg L(-1)) and P (25, 100, and 1,000 µg L(-1)) on alder leaf litter processing by an aquatic hyphomycete consortium. Our results showed that Al alone reduced fungal growth and altered fungal decomposer activities. High P levels, probably through an alleviation of Al-induced P limitation and a reduction of Al toxic forms, suppressed the negative effects of Al on detritus decomposition.


Assuntos
Alumínio/análise , Ecossistema , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Alnus/microbiologia , Alumínio/toxicidade , Monitoramento Ambiental , Fungos/efeitos dos fármacos , Fungos/fisiologia , Fósforo/toxicidade , Folhas de Planta/microbiologia , Rios/microbiologia , Poluentes Químicos da Água/toxicidade
6.
Environ Microbiol ; 16(7): 2145-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24034166

RESUMO

We combined microscopic and molecular methods to investigate fungal assemblages on alder leaf litter exposed in the benthic and hyporheic zones of five streams across a gradient of increasing acidification for 4 weeks. The results showed that acidification and elevated Al concentrations strongly depressed sporulating aquatic hyphomycetes diversity in both zones of streams, while fungal diversity assessed by denaturing gradient gel electrophoresis (DGGE) appeared unaffected. Clone library analyses revealed that fungal communities on leaves were dominated by members of Ascomycetes and to a lesser extent by Basidiomycetes and Chytridiomycetes. An important contribution of terrestrial fungi was observed in both zones of the most acidified stream and in the hyporheic zone of the reference circumneutral stream. The highest leaf breakdown rate was observed in the circumneutral stream and occurred in the presence of both the highest diversity of sporulating aquatic hyphomycetes and the highest contribution to clone libraries of sequences affiliated with aquatic hyphomycetes. Both methods underline the major role played by aquatic hyphomycetes in leaf decomposition process. Our findings also bring out new highlights on the identity of leaf-associated fungal communities and their responses to anthropogenic alteration of running water ecosystems.


Assuntos
Ascomicetos/genética , Basidiomycota/genética , Filogenia , Folhas de Planta/microbiologia , RNA Ribossômico 18S/genética , Alnus/microbiologia , Sequência de Aminoácidos , Ascomicetos/classificação , Basidiomycota/classificação , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Concentração de Íons de Hidrogênio , Consórcios Microbianos/genética , Dados de Sequência Molecular , Rios/microbiologia
7.
Microb Ecol ; 65(1): 1-11, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22903164

RESUMO

Anthropogenic acidification in headwater streams is known to affect microbial assemblages involved in leaf litter breakdown. Far less is known about its potential effects on microbial enzyme activities. To assess the effects of acidification on microbial activities associated with decaying leaves, a 70-day litter bag experiment was conducted in headwater streams at six sites across an acidification gradient. The results revealed that microbial leaf decomposition was strongly and negatively correlated with total Al concentrations (r = -0.99, p < 0.001) and positively correlated with Ca(2+) concentrations (r = 0.94, p = 0.005) and pH (r = 0.93, p = 0.008). Denaturing gradient gel electrophoresis analyses showed that microbial assemblages differed between non-impacted and impacted sites, whereas fungal biomass associated with decaying leaves was unaffected. The nutrient content of leaf detritus and ecoenzymatic activities of carbon (C), nitrogen (N) and phosphorus (P) acquisition revealed that N acquisition was unaltered, while P acquisition was significantly reduced across the acidification gradient. The P content of leaf litter was negatively correlated with total Al concentrations (r = -0.94, p < 0.01) and positively correlated with decomposition rates (r = 0.95, p < 0.01). This potential P limitation of microbial decomposers in impacted sites was confirmed by the particularly high turnover activity for phosphatase and imbalanced ratios between the ecoenzymatic activities of C and P acquisition. The toxic form of Al has well-known direct effects on aquatic biota under acidic conditions, but in this study, Al was found to also potentially affect microbially mediated leaf processing by interfering with the P cycle. These effects may in turn have repercussions on higher trophic levels and whole ecosystem functioning.


Assuntos
Ácidos/química , Fungos/metabolismo , Folhas de Planta/metabolismo , Rios/química , Rios/microbiologia , Microbiologia da Água , Alumínio/química , Biodegradação Ambiental , Biomassa , Carbono/análise , Enzimas/metabolismo , França , Fungos/enzimologia , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/microbiologia
8.
Water Res ; 46(19): 6430-44, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23069077

RESUMO

Anthropogenic acidification has deleterious effects on both structure and functioning of surface water ecosystems. This study examined how it may affect the leaf decomposition rate and the community structure and activity of decomposers in both benthic and hyporheic zones of five headwater streams along an acidification gradient from highly acidic (pH 4.6) to circumneutral (pH 7.4). Overall, responses to acidification in hyporheic zones were less pronounced, but followed the same pattern as in their benthic counterparts. Leaf decomposition was much faster in the circumneutral stream, both in the hyporheic and benthic zones (k = 0.0068 and 0.0534 d(-1), respectively), than in the most acidic one (k = 0.0016 and 0.0055 d(-1), respectively), and correlated well with the acidic gradient in both compartments. Interestingly, leaf litter decomposition was less affected by acidification in hyporheic compared to benthic compartments, likely due to the relatively low sensitivity of fungi, which were the main decomposers of buried coarse particulate organic matter. These results argue in favour of conserving hyporheic habitats in acidified streams as they can maintain matter and species fluxes that are essential to the ecosystem.


Assuntos
Ecossistema , Fungos , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Rios/química , Animais , Biodiversidade , Biomassa , França , Fungos/metabolismo , Concentração de Íons de Hidrogênio , Invertebrados/fisiologia , Folhas de Planta/química , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA