Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurol Genet ; 6(6): e534, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33659639

RESUMO

OBJECTIVE: To report the identification of 2 new homozygous recessive mutations in the synaptotagmin 2 (SYT2) gene as the genetic cause of severe and early presynaptic forms of congenital myasthenic syndromes (CMSs). METHODS: Next-generation sequencing identified new homozygous intronic and frameshift mutations in the SYT2 gene as a likely cause of presynaptic CMS. We describe the clinical and electromyographic patient phenotypes, perform ex vivo splicing analyses to characterize the effect of the intronic mutation on exon splicing, and analyze the functional impact of this variation at the neuromuscular junction (NMJ). RESULTS: The 2 infants presented a similar clinical phenotype evoking first a congenital myopathy characterized by muscle weakness and hypotonia. Next-generation sequencing allowed to the identification of 1 homozygous intronic mutation c.465+1G>A in patient 1 and another homozygous frameshift mutation c.328_331dup in patient 2, located respectively in the 5' splice donor site of SYT2 intron 4 and in exon 3. Functional studies of the intronic mutation validated the abolition of the splice donor site of exon 4 leading to its skipping. In-frame skipping of exon 4 that encodes part of the C2A calcium-binding domain of SYT2 is associated with a loss-of-function effect resulting in a decrease of neurotransmitter release and severe pre- and postsynaptic NMJ defects. CONCLUSIONS: This study identifies new homozygous recessive SYT2 mutations as the underlying cause of severe and early presynaptic form of CMS expanding the genetic spectrum of recessive SYT2-related CMS associated with defects in neurotransmitter release.

2.
Eur J Med Genet ; 52(5): 303-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19577670

RESUMO

We describe a patient homozygous for a novel mutation in COG7, coding for one of the subunits of the Conserved Oligomeric Golgi complex, involved in retrograde vesicular trafficking. His brother showed a similar clinical syndrome and glycosylation defect but no DNA could be obtained from this patient. This mutation, c.170-7A > G, activates a cryptic splice acceptor and leads to the insertion of 2 amino acids at protein level (p.56-57insAT). The insertion disturbs the structure and function of the Conserved Oligomeric Golgi complex. In comparison to the previously described patients with a different COG7 mutation, intrauterine growth retardation and dysmorphic features were absent and there was a longer survival.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Mutação , Subunidades Proteicas/genética , Idade de Início , Brefeldina A/farmacologia , Células Cultivadas , Córtex Cerebral/patologia , Consanguinidade , Análise Mutacional de DNA , DNA Complementar , Éxons , Insuficiência de Crescimento , Evolução Fatal , Febre , Fibroblastos/efeitos dos fármacos , Glicosilação , Complexo de Golgi/metabolismo , Complexo de Golgi/fisiologia , Homozigoto , Humanos , Lactente , Íntrons , Focalização Isoelétrica , Masculino , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico , Análise de Sequência de DNA , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA