Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 19(2): 20220454, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36974665

RESUMO

Actinopterygians are the most diversified clade of extant vertebrates. Their impressive morphological disparity bears witness to tremendous ecological diversity. Modularity, the organization of biological systems into quasi-independent anatomical/morphological units, is thought to increase evolvability of organisms and facilitate morphological diversification. Our study aims to quantify patterns of variational modularity in a model actinopterygian, the zebrafish (Danio rerio), using three-dimensional geometric morphometrics on osteological structures isolated from micro-CT scans. A total of 72 landmarks were digitized along cranial and postcranial ossified regions of 30 adult zebrafishes. Two methods were used to test modularity hypotheses, the covariance ratio and the distance matrix approach. We find strong support for two modules, one comprised paired fins and the other comprised median fins, that are best explained by functional properties of subcarangiform swimming. While the skull is tightly integrated with the rest of the body, its intrinsic integration is relatively weak supporting previous findings that the fish skull is a modular structure. Our results provide additional support for the recognition of similar hypotheses of modularity identified based on external morphology in various teleosts, and at least two variational modules are proposed. Thus, our results hint at the possibility that internal and external modularity patterns may be congruent.


Assuntos
Evolução Biológica , Peixe-Zebra , Animais , Crânio/anatomia & histologia , Cabeça , Nadadeiras de Animais/anatomia & histologia
2.
PLoS One ; 18(3): e0272246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36921006

RESUMO

Morphological and developmental similarities, and interactions among developing structures are interpreted as evidences of modularity. Such similarities exist between the dorsal and anal fins of living actinopterygians, on the anteroposterior axis: (1) both fins differentiate in the same direction [dorsal and anal fin patterning module (DAFPM)], and (2) radials and lepidotrichia differentiate in the same direction [endoskeleton and exoskeleton module (EEM)]. To infer the evolution of these common developmental patternings among osteichthyans, we address (1) the complete description and quantification of the DAFPM and EEM in a living actinopterygian (the rainbow trout Oncorhynchus mykiss) and (2) the presence of these modules in fossil osteichthyans (coelacanths, lungfishes, porolepiforms and 'osteolepiforms'). In Oncorhynchus, sequences of skeletal elements are determined based on (1) apparition (radials and lepidotrichia), (2) chondrification (radials), (3) ossification (radials and lepidotrichia), and (4) segmentation plus bifurcation (lepidotrichia). Correlations are then explored between sequences. In fossil osteichthyans, sequences are determined based on (1) ossification (radials and lepidotrichia), (2) segmentation, and (3) bifurcation of lepidotrichia. Segmentation and bifurcation patterns were found crucial for comparisons between extant and extinct osteichthyan taxa. Our data suggest that the EEM is plesiomorphic at least for actinopterygians, and the DAFPM is plesiomorphic for osteichthyans, with homoplastic dissociation. Finally, recurrent patterns suggest the presence of a Lepidotrichia Patterning Module (LPM).


Assuntos
Peixes , Fósseis , Animais , Peixes/anatomia & histologia , Evolução Biológica
3.
Elife ; 112022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35818828

RESUMO

The lobe-finned fish, lungfish (Dipnoi, Sarcoptergii), have persisted for ~400 million years from the Devonian Period to present day. The evolution of their dermal skull and dentition is relatively well understood, but this is not the case for the central nervous system. While the brain has poor preservation potential and is not currently known in any fossil lungfish, substantial indirect information about it and associated structures (e.g. labyrinths) can be obtained from the cranial endocast. However, before the recent development of X-ray tomography as a palaeontological tool, these endocasts could not be studied non-destructively, and few detailed studies were undertaken. Here, we describe and illustrate the endocasts of six Palaeozoic lungfish from tomographic scans. We combine these with six previously described digital lungfish endocasts (4 fossil and 2 recent taxa) into a 12-taxon dataset for multivariate morphometric analysis using 17 variables. We find that the olfactory region is more highly plastic than the hindbrain, and undergoes significant elongation in several taxa. Further, while the semicircular canals covary as an integrated module, the utriculus and sacculus vary independently of each other. Functional interpretation suggests that olfaction has remained a dominant sense throughout lungfish evolution, and changes in the labyrinth may potentially reflect a change from nektonic to near-shore environmental niches. Phylogenetic implications show that endocranial form fails to support monophyly of the 'chirodipterids'. Those with elongated crania similarly fail to form a distinct clade, suggesting these two paraphyletic groups have converged towards either head elongation or truncation driven by non-phylogenetic constraints.


Assuntos
Evolução Biológica , Fósseis , Animais , Encéfalo/diagnóstico por imagem , Peixes , Paleontologia , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem
4.
PeerJ ; 10: e13175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411253

RESUMO

The study of development is critical for revealing the evolution of major vertebrate lineages. Coelacanths have one of the longest evolutionary histories among osteichthyans, but despite access to extant representatives, the onset of their weakly ossified endoskeleton is still poorly understood. Here we present the first palaeohistological and skeletochronological study of Miguashaia bureaui from the Upper Devonian of Canada, pivotal for exploring the palaeobiology and early evolution of osteogenesis in coelacanths. Cross sections of the caudal fin bones show that the cortex is made of layers of primary bone separated by lines of arrested growth, indicative of a cyclical growth. The medullary cavity displays remnants of calcified cartilage associated with bony trabeculae, characteristic of endochondral ossification. A skeletochronological analysis indicates that rapid growth during a short juvenile period was followed by slower growth in adulthood. Our new analysis highlights the life history and palaeoecology of Miguashaia bureaui and reveals that, despite differences in size and habitat, the poor endoskeletal ossification known in the extant Latimeria chalumnae can be traced back at least 375 million years ago.


Assuntos
Peixes , Osteogênese , Animais , Osso e Ossos , Vertebrados , Cartilagem
5.
J Anat ; 240(2): 253-267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542171

RESUMO

Regionalization of the vertebral column occurred early during vertebrate evolution and has been extensively investigated in mammals. However, less data are available on vertebral regions of crown gnathostomes. This is particularly true for batoids (skates, sawfishes, guitarfishes, and rays) whose vertebral column has long been considered to be composed of the same two regions as in teleost fishes despite the presence of a synarcual. However, the numerous vertebral units in chondrichthyans may display a more complex regionalization pattern than previously assumed and the intraspecific variation of such pattern deserves a thorough investigation. In this study, we use micro-computed tomography (µCT) scans of vertebral columns of a growth series of thorny skates Amblyraja radiata to provide the first fine-scale morphological description of vertebral units in a batoids species. We further investigate axial regionalization using a replicable clustering analysis on presence/absence of vertebral elements to decipher the regionalization of the vertebral column of A. radiata. We identify four vertebral regions in this species. The two anteriormost regions, named synarcual and thoracic, may undergo strong developmental or functional constraints because they display stable patterns of shapes and numbers of vertebral units across all growth stages. The third region, named hemal transitional, is characterized by high inter-individual morphological variation and displays a transition between the monospondylous (one centrum per somite) to diplospondylous (two centra per somite) conditions. The posteriormost region, named caudal, is subdivided into three sub-regions with shapes changing gradually along the anteroposterior axis. These regionalized patterns are discussed in light of ecological habits of skates.


Assuntos
Rajidae , Animais , Rajidae/anatomia & histologia , Somitos , Coluna Vertebral/anatomia & histologia , Vertebrados/anatomia & histologia , Microtomografia por Raio-X
6.
PeerJ ; 9: e12597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966593

RESUMO

BACKGROUND: The megalichthyids are one of several clades of extinct tetrapodomorph fish that lived throughout the Devonian-Permian periods. They are advanced "osteolepidid-grade" fishes that lived in freshwater swamp and lake environments, with some taxa growing to very large sizes. They bear cosmine-covered bones and a large premaxillary tusk that lies lingually to a row of small teeth. Diagnosis of the family remains controversial with various authors revising it several times in recent works. There are fewer than 10 genera known globally, and only one member definitively identified from Gondwana. Cladarosymblema narrienense Fox et al. 1995 was described from the Lower Carboniferous Raymond Formation in Queensland, Australia, on the basis of several well-preserved specimens. Despite this detailed work, several aspects of its anatomy remain undescribed. METHODS: Two especially well-preserved 3D fossils of Cladarosymblema narrienense, including the holotype specimen, are scanned using synchrotron or micro-computed tomography (µCT), and 3D modelled using specialist segmentation and visualisation software. New anatomical detail, in particular internal anatomy, is revealed for the first time in this taxon. A novel phylogenetic matrix, adapted from other recent work on tetrapodomorphs, is used to clarify the interrelationships of the megalichthyids and confirm the phylogenetic position of C. narrienense. RESULTS: Never before seen morphological details of the palate, hyoid arch, basibranchial skeleton, pectoral girdle and axial skeleton are revealed and described. Several additional features are confirmed or updated from the original description. Moreover, the first full, virtual cranial endocast of any tetrapodomorph fish is presented and described, giving insight into the early neural adaptations in this group. Phylogenetic analysis confirms the monophyly of the Megalichthyidae with seven genera included (Askerichthys, Cladarosymblema, Ectosteorhachis, Mahalalepis, Megalichthys, Palatinichthys, and Sengoerichthys). The position of the megalichthyids as sister group to canowindrids, crownward of "osteolepidids" (e.g.,Osteolepis and Gogonasus), but below "tristichopterids" such as Eusthenopteron is confirmed, but our findings suggest further work is required to resolve megalichthyid interrelationships.

7.
Sci Rep ; 11(1): 19039, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561497

RESUMO

Like other soft-bodied organisms, ctenophores (comb jellies) produce fossils only under exceptional taphonomic conditions. Here, we present the first record of a Late Devonian ctenophore from the Escuminac Formation from Miguasha in eastern Canada. Based on the 18-fold symmetry of this disc-shaped fossil, we assign it to the total-group Ctenophora. Our phylogenetic analyses suggest that the new taxon Daihuoides jakobvintheri gen. et sp. nov. falls near Cambrian stem ctenophores such as 'dinomischids' and 'scleroctenophorans'. Accordingly, Daihuoides is a Lazarus-taxon, which post-dates its older relatives by over 140 million years, and overlaps temporally with modern ctenophores, whose oldest representatives are known from the Early Devonian. Our analyses also indicate that the fossil record of ctenophores does not provide strong evidence for or against the phylogenomic hypothesis that ctenophores are sister to all other metazoans.

8.
J Anat ; 239(2): 451-478, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33748974

RESUMO

Coelacanths have traditionally been described as morphologically conservative throughout their long evolutionary history, which spans more than 400 million years. After an initial burst during the Devonian, a morphological stasis was long thought to have prevailed since the Carboniferous, as shown by the extant Latimeria. New fossil discoveries have challenged this view, with punctual and sometimes unusual departures from the general coelacanth Bauplan. The dermal skeleton is considered to represent one, if not the main, example of morphological stasis in coelacanth evolution and as a consequence, has remained poorly surveyed. The lack of palaeohistological data on the dermoskeleton has resulted in a poor understanding of the early establishment and evolution of the coelacanth squamation. Here we describe the scales of Miguashaia bureaui from the Upper Devonian of Miguasha, Québec (Canada), revealing histological data for a Palaeozoic coelacanth in great detail and adding to our knowledge on the dermal skeleton of sarcopterygians. Miguashaia displays rounded scales ornamented by tubercules and narrow ridges made of dentine and capped with enamel. At least two generations of superimposed odontodes occur, which is reminiscent of the primitive condition of stem osteichthyans like Andreolepis or Lophosteus, and onychodonts like Selenodus. The middle vascular layer is well developed and shows traces of osteonal remodelling. The basal plate consists of a fully mineralised lamellar bone with a repetitive rotation pattern every five layers indicating a twisted plywood-like arrangement of the collagen plies. Comparisons with the extant Latimeria and other extinct taxa show that these features are consistently conserved across coelacanth evolution with only minute changes in certain taxa. The morphological and histological features displayed in the scales of Miguashaia enable us to draw a comprehensive picture of the onset of the coelacanth squamation and to propose and discuss evolutionary scenarios for the coelacanth dermoskeleton.


Assuntos
Escamas de Animais/ultraestrutura , Evolução Biológica , Peixes/anatomia & histologia , Animais , Feminino , Peixes/genética
10.
Nature ; 583(7817): E28, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32636486

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nature ; 579(7800): 549-554, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214248

RESUMO

The evolution of fishes to tetrapods (four-limbed vertebrates) was one of the most important transformations in vertebrate evolution. Hypotheses of tetrapod origins rely heavily on the anatomy of a few tetrapod-like fish fossils from the Middle and Late Devonian period (393-359 million years ago)1. These taxa-known as elpistostegalians-include Panderichthys2, Elpistostege3,4 and Tiktaalik1,5, none of which has yet revealed the complete skeletal anatomy of the pectoral fin. Here we report a 1.57-metre-long articulated specimen of Elpistostege watsoni from the Upper Devonian period of Canada, which represents-to our knowledge-the most complete elpistostegalian yet found. High-energy computed tomography reveals that the skeleton of the pectoral fin has four proximodistal rows of radials (two of which include branched carpals) as well as two distal rows that are organized as digits and putative digits. Despite this skeletal pattern (which represents the most tetrapod-like arrangement of bones found in a pectoral fin to date), the fin retains lepidotrichia (fin rays) distal to the radials. We suggest that the vertebrate hand arose primarily from a skeletal pattern buried within the fairly typical aquatic pectoral fin of elpistostegalians. Elpistostege is potentially the sister taxon of all other tetrapods, and its appendages further blur the line between fish and land vertebrates.


Assuntos
Evolução Biológica , Osso e Ossos/anatomia & histologia , Extremidades/anatomia & histologia , Fósseis , Vertebrados/anatomia & histologia , Nadadeiras de Animais/anatomia & histologia , Animais , Teorema de Bayes , Canadá , Peixes/anatomia & histologia , Filogenia
12.
Biol Lett ; 14(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899132

RESUMO

Within jawed vertebrates, pelvic appendages have been modified or lost repeatedly, including in the most phylogenetically basal, extinct, antiarch placoderms. One Early Devonian basal antiarch, Parayunnanolepis, possessed pelvic girdles, suggesting the presence of pelvic appendages at the origin of jawed vertebrates; their absence in more derived antiarchs implies a secondary loss. Recently, paired female genital plates were identified in the Late Devonian antiarch, Bothriolepis canadensis, in the position of pelvic girdles in other placoderms. We studied these putative genital plates along an ontogenetic series of B. canadensis; ontogenetic changes in their morphology, histology and elemental composition suggest they represent endoskeletal pelvic girdles composed of perichondral and endochondral bone. We suggest that pelvic fins of derived antiarchs were lost, while pelvic girdles were retained, but reduced, relative to Parayunnanolepis This indicates developmental plasticity and evolutionary lability in pelvic appendages, shortly after these elements evolved at the origin of jawed vertebrates.


Assuntos
Peixes/anatomia & histologia , Ossos Pélvicos/anatomia & histologia , Nadadeiras de Animais , Animais , Evolução Biológica , Peixes/crescimento & desenvolvimento , Fósseis , Ossos Pélvicos/crescimento & desenvolvimento , Filogenia
13.
Sci Rep ; 8(1): 7278, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740131

RESUMO

Modularity is considered a prerequisite for the evolvability of biological systems. This is because in theory, individual modules can follow quasi-independent evolutionary trajectories or evolve at different rates compared to other aspects of the organism. This may influence the potential of some modules to diverge, leading to differences in disparity. Here, we investigated this relationship between modularity, rates of morphological evolution and disparity using a phylogenetically diverse sample of ray-finned fishes. We compared the support for multiple hypotheses of evolutionary modularity and asked if the partitions delimited by the best-fitting models were also characterized by the highest evolutionary rate differentials. We found that an evolutionary module incorporating the dorsal, anal and paired fins was well supported by the data, and that this module evolves more rapidly and consequently generates more disparity than other modules. This suggests that modularity may indeed promote morphological disparity through differences in evolutionary rates across modules.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Evolução Biológica , Peixes/crescimento & desenvolvimento , Morfogênese/genética , Nadadeiras de Animais/anatomia & histologia , Animais , Peixes/genética , Morfogênese/fisiologia , Fenótipo , Filogenia , Alimentos Marinhos
14.
PeerJ ; 5: e3969, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29094000

RESUMO

The study of vertebrate ontogenies has the potential to inform us of shared developmental patterns and processes among organisms. However, fossilised ontogenies of early vertebrates are extremely rare during the Palaeozoic Era. A growth series of the Late Devonian "acanthodian" Triazeugacanthus affinis, from the Miguasha Fossil-Fish Lagerstätte, is identified as one of the best known early vertebrate fossilised ontogenies given the exceptional preservation, the large size range, and the abundance of specimens. Morphological, morphometric, histological and chemical data are gathered on a growth series of Triazeugacanthus ranging from 4 to 52 mm in total length. The developmental trajectory of this Devonian "acanthodian" is characteristic of fishes showing a direct development with alternating steps and thresholds. Larvae show no squamation but a progressive appearance of cartilaginous neurocranial and vertebral elements, and appendicular elements, whereas juveniles progress in terms of ossification and squamation. The presence of cartilaginous and bony tissues, discriminated on histological and chemical signatures, shows a progressive mineralisation of neurocranial and vertebral elements. Comparison among different body proportions for larvae, juveniles and adults suggest allometric growth in juveniles. Because of the phylogenetic position of "acanthodians", Triazeugacanthus ontogeny informs us about deep time developmental conditions in gnathostomes.

15.
Sci Rep ; 7(1): 9985, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855616

RESUMO

Jawed vertebrates, or gnathostomes, have two sets of paired appendages, pectoral and pelvic fins in fishes and fore- and hindlimbs in tetrapods. As for paired limbs, paired fins are purported serial homologues, and the advent of pelvic fins has been hypothesized to have resulted from a duplication of the developmental mechanisms present in the pectoral fins, but re-iterated at a posterior location. Developmental similarity of gene expression between pectoral and pelvic fins has been documented in chondrichthyans, but a detailed morphological description of the progression of paired fin development for this group is still lacking. We studied paired fin development in an ontogenetic series of a phylogenetically basal chondrichthyan, the elephant shark Callorhinchus milii. A strong similarity in the morphology and progression of chondrification between the pectoral and pelvic fins was found, which could be interpretated as further evidence of serial homology in paired fins, that could have arisen by duplication. Furthermore, this high degree of morphological and developmental similarity suggests the presence of morphological and developmental modules within paired fins, as observed in paired limbs. This is the first time morphological and developmental modules are described for the paired fins of chimaeras.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/embriologia , Padronização Corporal , Organogênese , Tubarões/anatomia & histologia , Tubarões/embriologia , Animais
16.
BMC Biol ; 15(1): 32, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28449681

RESUMO

BACKGROUND: Fishes are extremely speciose and also highly disparate in their fin configurations, more specifically in the number of fins present as well as their structure, shape, and size. How they achieved this remarkable disparity is difficult to explain in the absence of any comprehensive overview of the evolutionary history of fish appendages. Fin modularity could provide an explanation for both the observed disparity in fin configurations and the sequential appearance of new fins. Modularity is considered as an important prerequisite for the evolvability of living systems, enabling individual modules to be optimized without interfering with others. Similarities in developmental patterns between some of the fins already suggest that they form developmental modules during ontogeny. At a macroevolutionary scale, these developmental modules could act as evolutionary units of change and contribute to the disparity in fin configurations. This study addresses fin disparity in a phylogenetic perspective, while focusing on the presence/absence and number of each of the median and paired fins. RESULTS: Patterns of fin morphological disparity were assessed by mapping fin characters on a new phylogenetic supertree of fish orders. Among agnathans, disparity in fin configurations results from the sequential appearance of novel fins forming various combinations. Both median and paired fins would have appeared first as elongated ribbon-like structures, which were the precursors for more constricted appendages. Among chondrichthyans, disparity in fin configurations relates mostly to median fin losses. Among actinopterygians, fin disparity involves fin losses, the addition of novel fins (e.g., the adipose fin), and coordinated duplications of the dorsal and anal fins. Furthermore, some pairs of fins, notably the dorsal/anal and pectoral/pelvic fins, show non-independence in their character distribution, supporting expectations based on developmental and morphological evidence that these fin pairs form evolutionary modules. CONCLUSIONS: Our results suggest that the pectoral/pelvic fins and the dorsal/anal fins form two distinct evolutionary modules, and that the latter is nested within a more inclusive median fins module. Because the modularity hypotheses that we are testing are also supported by developmental and variational data, this constitutes a striking example linking developmental, variational, and evolutionary modules.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Evolução Biológica , Padronização Corporal , Peixes/crescimento & desenvolvimento , Nadadeiras de Animais/anatomia & histologia , Animais , Peixes/anatomia & histologia , Filogenia
17.
PLoS One ; 12(4): e0174235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28380079

RESUMO

The effect of the environment may result in different developmental outcomes. Extrinsic signals can modify developmental pathways and result in alternative phenotypes (phenotypic plasticity). The environment can also be interpreted as a stressor and increase developmental instability (developmental noise). Directional and fluctuating asymmetry provide a conceptual background to discriminate between these results. This study aims at assessing whether variation in dentition and shape of pharyngeal arches of the clonal fish Chrosomus eos-neogaeus results from developmental instability or environmentally induced changes. A total of 262 specimens of the Chrosomus eos-neogaeus complex from 12 natural sites were analysed. X-ray microcomputed tomography (X-ray micro-CT) was used to visualize the pharyngeal arches in situ with high resolution. Variation in the number of pharyngeal teeth is high in hybrids in contrast to the relative stability observed in both parental species. The basal dental formula is symmetric while the most frequent alternative dental formula is asymmetric. Within one lineage, large variation in the proportion of individuals bearing basal or alternative dental formulae was observed among sites in the absence of genetic difference. Both dentition and arch shape of this hybrid lineage were explained significantly by environmental differences. Only individuals bearing asymmetric dental formula displayed fluctuating asymmetry as well as directional left-right asymmetry for the arches. The hybrids appeared sensitive to environmental signals and intraspecific variation on pharyngeal teeth was not random but reflects phenotypic plasticity. Altogether, these results support the influence of the environment as a trigger for an alternative developmental pathway resulting in left-right asymmetry in dentition and shape of pharyngeal arches.


Assuntos
Região Branquial/fisiologia , Peixes/fisiologia , Dente/fisiologia , Animais , Dentição , Meio Ambiente , Fenótipo , Microtomografia por Raio-X/métodos
18.
PLoS One ; 12(4): e0174655, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403168

RESUMO

Growth series of Palaeozoic fishes are rare because of the fragility of larval and juvenile specimens owing to their weak mineralisation and the scarcity of articulated specimens. This rarity makes it difficult to describe early vertebrate growth patterns and processes in extinct taxa. Indeed, only a few growth series of complete Palaeozoic fishes are available; however, they allow the growth of isolated elements to be described and individual growth from these isolated elements to be inferred. In addition, isolated and in situ scales are generally abundant and well-preserved, and bring information on (1) their morphology and structure relevant to phylogenetic relationships and (2) individual growth patterns and processes relative to species ontogeny. The Late Devonian acanthodian Triazeugacanthus affinis from the Miguasha Fossil-Lagerstätte preserves one of the best known fossilised ontogenies of early vertebrates because of the exceptional preservation, the large size range, and the abundance of complete specimens. Here, we present morphological, histological, and chemical data on scales from juvenile and adult specimens (scales not being formed in larvae). Histologically, Triazeugacanthus scales are composed of a basal layer of acellular bone housing Sharpey's fibers, a mid-layer of mesodentine, and a superficial layer of ganoine. Developmentally, scales grow first through concentric addition of mesodentine and bone around a central primordium and then through superposition of ganoine layers. Ontogenetically, scales form first in the region below the dorsal fin spine, then squamation spreads anteriorly and posteriorly, and on fin webs. Phylogenetically, Triazeugacanthus scales show similarities with acanthodians (e.g. "box-in-box" growth), chondrichthyans (e.g. squamation pattern), and actinopterygians (e.g. ganoine). Scale histology and growth are interpreted in the light of a new phylogenetic analysis of gnathostomes supporting acanthodians as stem chondrichthyans.


Assuntos
Peixes/anatomia & histologia , Animais , Canadá , Epiderme/anatomia & histologia , Peixes/classificação , Fósseis , Filogenia , Coluna Vertebral/anatomia & histologia
19.
J Exp Zool B Mol Dev Evol ; 324(7): 614-28, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26227536

RESUMO

Evolution of the vertebrate skull is developmentally constrained by the interactions among its anatomical systems, such as the dermatocranium and the sensory system. The interaction between the dermal bones and lateral line canals has been debated for decades but their morphological integration has never been tested. An ontogenetic series of 97 juvenile and adult Amia calva (Actinopterygii) was used to describe the patterning and modularity of sensory lateral line canals and their integration with supporting cranial bones. Developmental modules were tested for the otic canal and supratemporal commissure by computing correlations in the branching sequence of groups of pores. Landmarks were digitized on 25 specimens to test a priori hypotheses of variational and developmental modularity at the level of canals and dermal bones. Branching sequence suggests a specific patterning supported by significant positive correlations in the sequence of appearance of branches between bilateral sides. Differences in patterning between the otic canal and the supratemporal commissure and tests of modularity with geometric morphometrics suggest that both canals form distinct modules. The integration between bones and canals was insufficient to detect a module. However, both components were not independent. Groups of pores tended to disappear without affecting other groups of pores suggesting that they are quasi-independent units acting as modules. This study provides evidence of a hierarchical organization for the modular sensory system that could explain variation of pattern of canals among species and their association with dermal bones.


Assuntos
Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimento , Crânio/anatomia & histologia , Crânio/crescimento & desenvolvimento , Animais , Desenvolvimento Ósseo , Cabeça/anatomia & histologia , Cabeça/crescimento & desenvolvimento , Sistema da Linha Lateral/anatomia & histologia , Sistema da Linha Lateral/crescimento & desenvolvimento
20.
Biol Lett ; 11(2): 20140950, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25694507

RESUMO

Since its original description as a chordate, the Late Devonian Scaumenella mesacanthi has been interpreted alternately as a prochordate, a larval ostracoderm and an immature acanthodian. For the past 30 years, these minute specimens were generally considered as decayed acanthodians, most of them belonging to Triazeugacanthus affinis. Among the abundant material of 'Scaumenella', we identified a size series of 188 specimens of Triazeugacanthus based on otolith characteristics. Despite taphonomic alteration, we describe proportional growth and progressive appearance of skeletal elements through size increase. Three ontogenetic stages are identified based on squamation extent, ossification completion and allometric growth. We demonstrate that what has been interpreted previously as various degrees of decomposition corresponds to ontogenetic changes.


Assuntos
Peixes/crescimento & desenvolvimento , Fósseis , Animais , Desenvolvimento Ósseo , Osso e Ossos/anatomia & histologia , Peixes/anatomia & histologia , Peixes/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA