Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Can J Physiol Pharmacol ; 100(7): 573-583, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245103

RESUMO

Endothelin has emerged as a target for therapeutic intervention in systemic hypertension. As a vasoconstrictor, comitogenic agent, linking pulse pressure and vascular remodeling, and mediator of aldosterone and catecholamine release, endothelin is a key player in hypertension and end-organ damage. In 10%-20% of the hypertensive population, the high blood pressure is resistant to administration of antihypertensive drugs of different classes in combination. Because endothelin is not targeted by the current antihypertensive drugs, this may suggest that this resistance is due, in part at least, to a dependence on endothelin. This hypothesis is supported by the observation that this form of hypertension is often salt-sensitive, and that the endothelin system is stimulated by salt. In addition, the endothelin system is activated in subjects at risk of developing resistant hypertension, such as African Americans or patients with obesity or obstructive sleep apnea. Aprocitentan is an investigational, novel, potent, dual endothelin receptor antagonist (ERA) currently in phase 3 development for the treatment of difficult-to-treat hypertension. This article discusses the research that underpinned the discovery of this ERA and the choice of its first clinical indication for patients with forms of hypertension that cannot be well controlled with classical antihypertensive drugs.


Assuntos
Anti-Hipertensivos , Hipertensão , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Antagonistas dos Receptores de Endotelina/uso terapêutico , Endotelina-1 , Endotelinas , Humanos , Hipertensão/tratamento farmacológico , Pirimidinas , Receptor de Endotelina A , Sulfonamidas
2.
Psychopharmacology (Berl) ; 238(10): 2693-2708, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34415378

RESUMO

Dual orexin receptor antagonists (DORAs) represent a novel type of sleep medication that provide an alternative to the traditionally used positive allosteric gamma-aminobutyric acid (GABA)-A receptor modulators. Daridorexant is a new DORA that exhibited in phase 3 trials in insomnia not only a beneficial effect on sleep variables, measured objectively and assessed subjectively, but also an improvement in daytime functioning. Daridorexant was discovered through a tailored research program aimed at identifying an optimized sleep-promoting molecule with pharmacokinetic properties appropriate for covering the whole night while avoiding next-morning residual activity at efficacious doses. By specific binding to both orexin receptors, daridorexant inhibits the actions of the wake-promoting orexin (also called hypocretin) neuropeptides. This mechanism avoids a more widespread inhibition of neuronal pathways and associated side effects that are intrinsic to positive allosteric GABA-A receptor modulators. Here, we review the general pharmacology of daridorexant, based on nonclinical pharmacology studies of daridorexant, unpublished or already described, or based on work with other DORAs. Some unique features of daridorexant will be highlighted, such as the promotion of natural and surmountable sleep, the preservation of memory and cognition, the absence of tolerance development or risk of physical dependence, and how it can benefit daytime functioning.


Assuntos
Antagonistas dos Receptores de Orexina , Distúrbios do Início e da Manutenção do Sono , Humanos , Imidazóis , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina , Pirrolidinas , Sono , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico
4.
Allergy ; 75(1): 84-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31267528

RESUMO

BACKGROUND: Asthma patients present with distinct immunological profiles, with a predominance of type 2 endotype. The aim of this study was to investigate the impact of high-altitude treatment on the clinical and immunological response in asthma. METHODS: Twenty-six hospitalized asthma patients (nine eosinophilic allergic; EA, nine noneosinophilic allergic; NEA and eight noneosinophilic nonallergic; NN) and nine healthy controls in high altitude for 21 days were enrolled in the study. We assessed eosinophils, T cells, Tregs, and innate lymphoid cells (ILC) from peripheral blood using flow cytometry. RESULTS: The number of eosinophils (both resting and activated) and chemoattractant receptor homolog expressed on Th2 cells (CRTH2)-expressing CD4+ and CD8+ T cells decreased significantly in EA patients after altitude treatment. The frequency of CRTH2+ Tregs as decreased significantly in all the asthma phenotypes as well as the frequency of ILC2 was significantly reduced in EA after altitude treatment. After 21 days of altitude therapy, CRTH2-expressing ILC2, CD4+ and CD8+ T cells and Treg cells showed attenuated responses to exogenous PGD2. Furthermore, PGD2 signaling via CRTH2 was found to diminish the suppressive function of CRTH2+ Tregs which partially normalized during high-altitude treatment. Improved asthma control was particularly evident in allergic asthma patients and correlated with decreased frequencies of CRTH2+ Treg cells in EA patients. Serum IL-5 and IL-13 decreased during climate treatment in asthma patients with high baseline levels. CONCLUSIONS: Asthma treatment in high altitude reduced the type 2 immune response, corrected the increased CRTH2 expression and its dysregulated functions.


Assuntos
Altitude , Asma/imunologia , Linfócitos/imunologia , Receptores Imunológicos/imunologia , Receptores de Prostaglandina/imunologia , Células Th2/imunologia , Adulto , Feminino , Humanos , Masculino , Subpopulações de Linfócitos T/imunologia
5.
Innov Clin Neurosci ; 16(3-4): 22-30, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31214480

RESUMO

Background: Despite the recent approval of new oral therapies for the treatment of multiple sclerosis (MS), a significant percentage of patients are still not free from disease activity. In view of the complex pathogenesis and the relapsing and progressive nature of MS, combination therapy, a classical approach to treat many chronic diseases, could improve disease control over monotherapy. Ponesimod, a selective and rapidly reversible sphingosine-1-phosphate receptor Type 1 (S1P1) modulator, currently in Phase III clinical trial stage in relapsing MS (RMS), and dimethyl fumarate (DMF) would potentially be an ideal combination due to their differing mechanisms of action and oral administration. Objective: The goal of the study was to evaluate the therapeutic effect of ponesimod monotherapy and investigate the potential additive, or synergistic, activity of ponesimod-DMF combination therapy in experimental autoimmune encephalomyelitis (EAE) animal models of MS. Methods: Efficacy was evaluated in the myelin oligodendrocyte glycoprotein (MOG)-induced EAE model in C57BL/6 mice (ponesimod monotherapy) and in the myelin basic protein (MBP)-induced EAE model in Lewis rats (monotherapies and combination therapy). The principal readout was the clinical score assessing paralysis. Additional readouts, such as histopathology, survival, and disease prevalence, were generated in parallel when applicable. Results: Ponesimod monotherapy in the mouse EAE model showed significant efficacy in both preventative and therapeutic settings. In the rat EAE model, ponesimod demonstrated significant dose-dependent efficacy on clinical scores, while DMF showed only modest activity. Combination therapy synergistically reduced the severity and prevalence of disease. Only the combination treatment of ponesimod and DMF fully suppressed clinical disease activity by the end of the study. Conclusion: The results support the potential therapeutic benefits of combining ponesimod with DMF to improve disease activity control in patients with MS. Additionally, the results suggest that combining ponesimod with other oral agents that have different mechanisms of action might also be therapeutically beneficial to patients with MS.

6.
J Pharmacol Exp Ther ; 368(3): 462-473, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622171

RESUMO

The endothelin (ET) system has emerged as a novel target for hypertension treatment where a medical need persists despite availability of several pharmacological classes, including renin angiotensin system (RAS) blockers. ET receptor antagonism has demonstrated efficacy in preclinical models of hypertension, especially under low-renin conditions and in hypertensive patients. We investigated the pharmacology of aprocitentan (N-[5-(4-bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-sulfamide), a potent dual ETA/ETB receptor antagonist, on blood pressure (BP) in two models of experimental hypertension: deoxycorticosterone acetate (DOCA)-salt rats (low-renin model) and spontaneously hypertensive rats [(SHR), normal renin model]. We also compared the effect of its combination with RAS blockers (valsartan and enalapril) with that of the combination of the mineraloreceptor antagonist spironolactone with the same RAS blockers on BP and renal function in hypertensive rats. Aprocitentan was more potent and efficacious in lowering BP in conscious DOCA-salt rats than in SHRs. In DOCA-salt rats, single oral doses of aprocitentan induced a dose-dependent and long-lasting BP decrease and 4-week administration of aprocitentan dose dependently decreased BP (statistically significant) and renal vascular resistance, and reduced left ventricle hypertrophy (nonsignificant). Aprocitentan was synergistic with valsartan and enalapril in decreasing BP in DOCA-salt rats and SHRs while spironolactone demonstrated additive effects with these RAS blockers. In hypertensive rats under sodium restriction and enalapril, addition of aprocitentan further decreased BP without causing renal impairment, in contrast to spironolactone. In conclusion, ETA/ETB receptor antagonism represents a promising therapeutic approach to hypertension, especially with low-renin characteristics, and could be used in combination with RAS blockers, without increasing the risk of renal impairment.


Assuntos
Anti-Hipertensivos/administração & dosagem , Antagonistas dos Receptores de Endotelina/administração & dosagem , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Pirimidinas/administração & dosagem , Sistema Renina-Angiotensina/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Animais , Anti-Hipertensivos/farmacologia , Acetato de Desoxicorticosterona/toxicidade , Quimioterapia Combinada , Antagonistas dos Receptores de Endotelina/farmacologia , Hipertensão/induzido quimicamente , Masculino , Pirimidinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Sistema Renina-Angiotensina/fisiologia , Sulfonamidas/farmacologia
7.
J Pharmacol Exp Ther ; 365(3): 727-733, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29588339

RESUMO

Selexipag [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide] is a selective nonprostanoid prostacyclin (PGI2) receptor (IP receptor) agonist that is approved for the treatment of pulmonary arterial hypertension (PAH). In contrast to selexipag, PGI2 analogs used in the clinic are nonselective agonists at prostanoid receptors and can also activate contractile prostaglandin E receptor 3 (EP3) receptors. Leg pain is a common side effect in patients receiving treatment with PGI2 analogs and peripheral vasoconstriction can be responsible for side effects related to muscular ischemia. This study tested the hypothesis that PGI2 analogs could cause paradoxical vasoconstriction of the femoral artery via EP3 receptor activation but that only vasorelaxation would be observed in response to selexipag and its active metabolite ACT-333679 [{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid]. Selexipag and ACT-333679 relaxed rings of the isolated rat femoral artery contracted with either prostaglandin F2α (PGF2α ) or the α1 adrenoceptor (α1AR) agonist phenylephrine. ACT-333679 also inhibited contraction of the femoral artery to sympathetic nerve stimulation. In contrast, PGI2 analogs (iloprost, beraprost, and treprostinil) caused additional contraction of arterial rings precontracted with phenylephrine, which was reverted to relaxation by antagonism of EP3 receptors. Treprostinil augmented contraction of the femoral artery to sympathetic nerve stimulation in an EP3 receptor-dependent manner. Mechanistically, concomitant EP3 and α1AR receptor activation synergistically constricted femoral arteries. It is concluded that selexipag and ACT-333679 are vasorelaxants of the rat femoral artery and, unlike PGI2 analogs, do not cause paradoxical vasoconstriction via activation of EP3 receptors. EP3 receptor-mediated vasoconstriction may contribute to the well documented peripheral muscle pain reported in patients with PAH receiving PGI2 analogs. Leg pain may be less in patients treated with selexipag.


Assuntos
Acetamidas/farmacologia , Epoprostenol/química , Epoprostenol/farmacologia , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiologia , Pirazinas/farmacologia , Receptores de Epoprostenol/agonistas , Vasoconstrição/efeitos dos fármacos , Animais , Artéria Femoral/metabolismo , Masculino , Ratos , Ratos Wistar , Receptores de Prostaglandina E Subtipo EP3/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29226621

RESUMO

Sphingosine-1-phosphate receptor 1 (S1P1 ) modulators sequester circulating lymphocytes within lymph nodes, thereby preventing potentially pathogenic autoimmune cells from exiting into the blood stream and reaching inflamed tissues. S1P1 receptor modulation may thus offer potential to treat various autoimmune diseases. The first nonselective S1P1-5 receptor modulator FTY720/fingolimod/Gilenya® has successfully demonstrated clinical efficacy in relapsing forms of multiple sclerosis. However, cardiovascular, hepatic, and respiratory side-effects were reported and there is a need for novel S1P1 receptor modulators with better safety profiles. Here, we describe the discovery of cenerimod, a novel, potent and selective S1P1 receptor modulator with unique S1P1 receptor signaling properties and absence of broncho- and vasoconstrictor effects ex vivo and in vivo. Cenerimod dose-dependently lowered circulating lymphocyte counts in rats and mice after oral administration and effectively attenuated disease parameters in a mouse experimental autoimmune encephalitis (EAE) model. Cenerimod has potential as novel therapy with improved safety profile for autoimmune diseases with high unmet medical need.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Imunossupressores/administração & dosagem , Linfócitos/efeitos dos fármacos , Oxidiazóis/administração & dosagem , Piridinas/administração & dosagem , Receptores de Lisoesfingolipídeo/agonistas , Administração Oral , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Contagem de Linfócitos , Camundongos , Oxidiazóis/química , Oxidiazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Ratos , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Pharmacol Res Perspect ; 5(5)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805949

RESUMO

The P2Y12 receptor is a validated target for prevention of major adverse cardiovascular events in patients with acute coronary syndrome. The aim of this study was to compare two direct-acting, reversible P2Y12 antagonists, ACT-246475 and ticagrelor, in a rat thrombosis model by simultaneous quantification of their antithrombotic efficacy and surgery-induced blood loss. Blood flow velocity was assessed in the carotid artery after FeCl3 -induced thrombus formation using a Doppler flow probe. At the same time, blood loss after surgical wounding of the spleen was quantified. Continuous infusions of ACT-246475 and ticagrelor prevented the injury-induced reduction of blood flow in a dose-dependent manner. High doses of both antagonists normalized blood flow and completely abolished thrombus formation as confirmed by histology. Intermediate doses restored baseline blood flow to ≥65%. However, ACT-246475 caused significantly less increase of blood loss than ticagrelor; the difference in blood loss was 2.6-fold (P < 0.01) at high doses and 2.7-fold (P < 0.05) at intermediate doses. Potential reasons for this unexpected difference were explored by measuring the effects of ACT-246475 and ticagrelor on vascular tone. At concentrations needed to achieve maximal antithrombotic efficacy, ticagrelor compared with ACT-246475 significantly increased carotid blood flow velocity in vivo (P = 0.003), induced vasorelaxation of precontracted rat femoral arteries, and inhibited contraction of femoral artery induced by electrical field stimulation or by phenylephrine. Overall, ACT-246475 showed a significantly wider therapeutic window than ticagrelor. The absence of vasodilatory effects due to high selectivity of ACT-246475 for P2Y12 provides potential arguments for the observed safety advantage of ACT-246475 over ticagrelor.

10.
J Pharmacol Exp Ther ; 362(1): 186-199, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28476928

RESUMO

Prostacyclin (PGI2) receptor (IP receptor) agonists, which are indicated for the treatment of pulmonary arterial hypertension (PAH), increase cytosolic cAMP levels and thereby inhibit pulmonary vasoconstriction, pulmonary arterial smooth muscle cell (PASMC) proliferation, and extracellular matrix synthesis. Selexipag (Uptravi, 2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide) is the first nonprostanoid IP receptor agonist, it is available orally and was recently approved for the treatment of PAH. In this study we show that the active metabolite of selexipag and the main contributor to clinical efficacy ACT-333679 (previously known as MRE-269) behaved as a full agonist in multiple PAH-relevant receptor-distal-or downstream-cellular assays with a maximal efficacy (Emax) comparable to that of the prototypic PGI2 analog iloprost. In PASMC, ACT-333679 potently induced cellular relaxation (EC50 4.3 nM) and inhibited cell proliferation (IC50 4.0 nM) as well as extracellular matrix synthesis (IC50 8.3 nM). In contrast, ACT-333679 displayed partial agonism in receptor-proximal-or upstream-cAMP accumulation assays (Emax 56%) when compared with iloprost and the PGI2 analogs beraprost and treprostinil (Emax ∼100%). Partial agonism of ACT-333679 also resulted in limited ß-arrestin recruitment (Emax 40%) and lack of sustained IP receptor internalization, whereas all tested PGI2 analogs behaved as full agonists in these desensitization-related assays. In line with these in vitro findings, selexipag, but not treprostinil, displayed sustained efficacy in rat models of pulmonary and systemic hypertension. Thus, the partial agonism of ACT-333679 allows for full efficacy in amplified receptor-distal PAH-relevant readouts while causing limited activity in desensitization-related receptor-proximal readouts.


Assuntos
Acetamidas/farmacologia , Acetatos/farmacologia , Proteínas Contráteis/antagonistas & inibidores , Contração Muscular/efeitos dos fármacos , Pirazinas/farmacologia , beta-Arrestinas/metabolismo , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Iloprosta/farmacologia , Masculino , Relaxamento Muscular/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Receptores de Epoprostenol/agonistas
11.
J Pharmacol Exp Ther ; 361(2): 322-333, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223322

RESUMO

Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ETB receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ETA-selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ETA-selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ETA-selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ETB-selective receptor antagonism. ETA-selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ETA-selective antagonism increased vascular permeability via ETB receptor overstimulation. Acutely, ETA-selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ETA-selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ETB receptors, endothelin receptor antagonists (particularly ETA-selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease even in the absence of signs of fluid retention.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Antagonistas dos Receptores de Endotelina/farmacologia , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Aldosterona/metabolismo , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Arginina Vasopressina/metabolismo , Bosentana , Endotelinas/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hematócrito/métodos , Hemoglobinas/metabolismo , Masculino , Fenilpropionatos/farmacologia , Piridazinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Brattleboro , Ratos Wistar , Receptores de Vasopressinas/metabolismo , Sulfonamidas/farmacologia , Vasodilatação/efeitos dos fármacos
12.
PLoS Med ; 13(10): e1002138, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27701420

RESUMO

BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study.


Assuntos
Acrilamidas/farmacologia , Antimaláricos/farmacologia , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Acrilamidas/farmacocinética , Animais , Antimaláricos/farmacocinética , Artemisininas/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Piperazinas/farmacocinética , Plasmodium berghei/efeitos dos fármacos
13.
Am J Physiol Regul Integr Comp Physiol ; 311(4): R721-R726, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27534881

RESUMO

Endothelin receptor antagonists (ERAs) are used for the treatment of pulmonary arterial hypertension (PAH). Macitentan, a dual (ETA+ETB) ERA approved for the long-term treatment of PAH, was discovered through a tailored research program aimed at improving efficacy and safety over the existing ERAs. The goal of improved efficacy was based on the understanding that not only the ETA receptor but also the ETB receptor contributed to the hemodynamic and structural changes induced by endothelin-1 (ET-1) in pathological conditions and on the predefined requirements for optimal tissue penetration and binding kinetics of the antagonist. The goal of improved safety was based on the discovery of the role of ETB receptors in vascular permeability and vasopressin release and on the elucidation of the mechanism by which bosentan (the first approved oral dual ETA/ETB ERA) caused liver enzyme changes. Our intention was to design a molecule that would block ETA and ETB receptors optimally and would not interfere with bile salt elimination. This review takes us through the drug discovery journey that led to the discovery, development, and registration of macitentan.


Assuntos
Antagonistas dos Receptores de Endotelina/administração & dosagem , Endotelina-1/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Pirimidinas/administração & dosagem , Receptores de Endotelina/metabolismo , Sulfonamidas/administração & dosagem , Animais , Anti-Hipertensivos/administração & dosagem , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Resultado do Tratamento
14.
Mol Microbiol ; 101(3): 381-93, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27073104

RESUMO

Emerging resistance to first-line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine-containing compound ACT-451840 exhibits single-digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro-derived ACT-451840-resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane-bound ATP-binding cassette transporter known to alter P. falciparum susceptibility to multiple first-line antimalarials. CRISPR-Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT-451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9-introduced pfmdr1 mutations also acquired ACT-451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease-relieving and transmission-blocking antimalarials.


Assuntos
Acrilamidas/farmacologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Resistência a Medicamentos , Sinergismo Farmacológico , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/metabolismo , Mutação Puntual , Polimorfismo de Nucleotídeo Único
15.
Antimicrob Agents Chemother ; 60(1): 628-31, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26503650

RESUMO

The promotion of colonization with vancomycin-resistant enterococci (VRE) is one potential side effect during treatment of Clostridium difficile-associated diarrhea (CDAD), resulting from disturbances in gut microbiota. Cadazolid (CDZ) is an investigational antibiotic with potent in vitro activity against C. difficile and against VRE and is currently in clinical development for the treatment of CDAD. We report that CDZ treatment did not lead to intestinal VRE overgrowth in mice.


Assuntos
Antibacterianos/efeitos adversos , Clostridioides difficile/efeitos dos fármacos , Diarreia/tratamento farmacológico , Enterocolite Pseudomembranosa/tratamento farmacológico , Oxazolidinonas/farmacologia , Vancomicina/efeitos adversos , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/administração & dosagem , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Contagem de Colônia Microbiana , Diarreia/etiologia , Diarreia/microbiologia , Diarreia/patologia , Enterocolite Pseudomembranosa/etiologia , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/patologia , Fidaxomicina , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Metronidazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Resultado do Tratamento , Vancomicina/administração & dosagem , Resistência a Vancomicina , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento , Enterococos Resistentes à Vancomicina/patogenicidade
16.
J Cardiovasc Pharmacol ; 66(5): 457-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26230396

RESUMO

AIMS: We compared the efficacy of macitentan, a novel dual endothelin A/endothelin B receptor antagonist, with that of another dual endothelin receptor antagonist, bosentan, in a rat model of non-vasoreactive pulmonary hypertension (PH) with particular emphasis on right ventricular (RV) remodeling. METHODS AND RESULTS: Unlike monocrotaline or hypoxic/sugen rats, bleomycin-treated rats presented a non-vasoreactive PH characterized by the absence of pulmonary dilatation to adenosine. We therefore chose the bleomycin rat model to compare the effects of the maximally effective doses of macitentan and bosentan on pulmonary vascular and RV remodeling. Macitentan (100 mg·kg(-1)·d(-1)), but not bosentan (300 mg·kg(-1)·d(-1)), significantly prevented pulmonary vascular remodeling, RV hypertrophy, and cardiomyocyte diameter increase. Cardiac protection by macitentan was associated with a significant attenuation of genes related to cell hypertrophy and extracellular matrix remodeling. Microautoradiography and high performance liquid chromatography analysis showed greater distribution of macitentan than bosentan in the RV and pulmonary tissue. CONCLUSIONS: Macitentan was more efficacious than bosentan in preventing the development of pulmonary and RV hypertrophies in a model of non-vasoreactive PH. Greater ability to distribute into the tissue could contribute to the greater structural improvement by macitentan compared with bosentan.


Assuntos
Antagonistas dos Receptores de Endotelina/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Bleomicina , Bosentana , Modelos Animais de Doenças , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos Wistar , Fatores de Tempo , Remodelação Vascular/efeitos dos fármacos
17.
Ann N Y Acad Sci ; 1358: 68-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26291180

RESUMO

Pulmonary arterial hypertension (PAH) is a serious, chronic condition that, without early recognition and treatment, leads to progressive right heart failure and death. The dual endothelin receptor antagonist macitentan was designed through a deliberate discovery process to maximize endothelin-axis blockade while improving adverse-effect profiles compared with previous compounds. Macitentan's efficacy was demonstrated in an event-driven morbidity and mortality study of treatment-naive and background PAH therapy-treated symptomatic patients. Compared to placebo, 10 mg of macitentan significantly reduced the relative risk of morbidity and mortality by 45%, primarily by delaying PAH worsening, most prominently in World Health Organization (WHO) functional class II and III PAH patients. Macitentan reduced the incidence of the composite end point of PAH-related hospitalizations and mortality and improved WHO FC and exercise capacity (6-min walk distance). Furthermore, it significantly improved cardiopulmonary hemodynamics and quality of life, and had a favorable safety and tolerability profile. To date, this was the largest and longest prospective trial for PAH. Macitentan, currently the only approved oral PAH treatment shown to be safe and effective in delaying long-term progression and reducing PAH-related hospitalizations, has changed treatment paradigms from goal-directed to long-term outcome-oriented therapy.


Assuntos
Antagonistas dos Receptores de Endotelina/uso terapêutico , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Descoberta de Drogas , Antagonistas dos Receptores de Endotelina/administração & dosagem , Antagonistas dos Receptores de Endotelina/efeitos adversos , Humanos , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos
18.
J Med Chem ; 58(18): 7128-37, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26291199

RESUMO

Prostacyclin controls cardiovascular function via activation of the prostacyclin receptor. Decreased prostacyclin production occurs in several cardiovascular diseases. However, the clinical use of prostacyclin and its analogues is complicated by their chemical and metabolic instability. A medicinal chemistry program searched for novel nonprostanoid prostacyclin receptor agonists not subject to these limitations. A compound with a diphenylpyrazine structural core was synthesized. Metabolic stability and agonist potency were optimized through modification of the linear side chain. Compound 12b (MRE-269, ACT-333679) was identified as a potent and highly selective prostacyclin receptor agonist. Replacement of the terminal carboxyl group with an N-acylsulfonamide group yielded parent compound 26a (selexipag, NS-304, ACT-293987), which is orally active and provides sustained plasma exposure of 12b. Compound 26a was developed for the treatment of pulmonary arterial hypertension and shown to reduce the risk of the composite morbidity/mortality end point in a phase 3 event-driven clinical trial.


Assuntos
Acetamidas/química , Acetatos/química , Hipertensão Pulmonar/tratamento farmacológico , Pirazinas/química , Receptores de Epoprostenol/agonistas , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Acetatos/farmacologia , Acetatos/uso terapêutico , Administração Oral , Animais , Células CHO , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Cricetulus , Cães , Método Duplo-Cego , Haplorrinos , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Artéria Pulmonar/citologia , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Relação Estrutura-Atividade
19.
J Cardiovasc Pharmacol ; 66(4): 332-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25992919

RESUMO

INTRODUCTION: The goal of this study was to characterize the role of Endothelin (ET) type B receptors (ETB) on vascular function in healthy and diseased conditions and demonstrate how it affects the pharmacological activity of ET receptor antagonists (ERAs). METHODS: The contribution of the ETB receptor to vascular relaxation or constriction was characterized in isolated arteries from healthy and diseased rats with systemic (Dahl-S) or pulmonary hypertension (monocrotaline). Because the role of ETB receptors is different in pathological vis-à-vis normal conditions, we compared the efficacy of ETA-selective and dual ETA/ETB ERAs on blood pressure in hypertensive rats equipped with telemetry. RESULTS: In healthy vessels, ETB receptors stimulation with sarafotoxin S6c induced vasorelaxation and no vasoconstriction. In contrast, in arteries of rats with systemic or pulmonary hypertension, endothelial ETB-mediated relaxation was lost while vasoconstriction on stimulation by sarafotoxin S6c was observed. In hypertensive rats, administration of the dual ETA/ETB ERA macitentan on top of a maximal effective dose of the ETA-selective ERA ambrisentan further reduced blood pressure, indicating that ETB receptors blockade provides additional benefit. CONCLUSIONS: Taken together, these data suggest that in pathology, dual ETA/ETB receptor antagonism can provide superior vascular effects compared with ETA-selective receptor blockade.


Assuntos
Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Vasodilatação/efeitos dos fármacos , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão Pulmonar/metabolismo , Técnicas In Vitro , Óxido Nítrico/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos Endogâmicos Dahl , Ratos Wistar , Vasoconstrição/efeitos dos fármacos
20.
Life Sci ; 118(2): 333-9, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-24582812

RESUMO

AIMS: The endothelin (ET) system is a tissular system, as the production of ET isoforms is mostly autocrine or paracrine. Macitentan is a novel dual ETA/ETB receptor antagonist with enhanced tissue distribution and sustained receptor binding properties designed to achieve a more efficacious ET receptor blockade. To determine if these features translate into improved efficacy in vivo, a study was designed in which rats with either systemic or pulmonary hypertension and equipped with telemetry were given macitentan on top of maximally effective doses of another dual ETA/ETB receptor antagonist, bosentan, which does not display sustained receptor occupancy and shows less tissue distribution. MAIN METHODS: After establishing dose-response curves of both compounds in conscious, hypertensive Dahl salt-sensitive and pulmonary hypertensive bleomycin-treated rats, macitentan was administered on top of the maximal effective dose of bosentan. KEY FINDINGS: In hypertensive rats, macitentan 30 mg/kg further decreased mean arterial blood pressure (MAP) by 19 mm Hg when given on top of bosentan 100 mg/kg (n=9, p<0.01 vs. vehicle). Conversely, bosentan given on top of macitentan failed to induce an additional MAP decrease. In pulmonary hypertensive rats, macitentan 30 mg/kg further decreased mean pulmonary artery pressure (MPAP) by 4 mm Hg on top of bosentan (n=8, p<0.01 vs. vehicle), whereas a maximal effective dose of bosentan given on top of macitentan did not cause any additional MPAP decrease. SIGNIFICANCE: The add-on effect of macitentan on top of bosentan in two pathological models confirms that this novel compound can achieve a superior blockade of ET receptors and provides evidence for greater maximal efficacy.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Bleomicina , Bosentana , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas dos Receptores de Endotelina/sangue , Antagonistas dos Receptores de Endotelina/farmacologia , Antagonistas dos Receptores de Endotelina/uso terapêutico , Hipertensão Pulmonar/sangue , Pirimidinas/sangue , Pirimidinas/uso terapêutico , Ratos , Ratos Endogâmicos Dahl , Reprodutibilidade dos Testes , Sulfonamidas/sangue , Sulfonamidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA