Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6101, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243734

RESUMO

The hindered diffusion model postulates that the movement of a signaling molecule through an embryo is affected by tissue geometry and binding-mediated hindrance, but these effects have not been directly demonstrated in vivo. Here, we visualize extracellular movement and binding of individual molecules of the activator-inhibitor signaling pair Nodal and Lefty in live developing zebrafish embryos using reflected light-sheet microscopy. We observe that diffusion coefficients of molecules are high in extracellular cavities, whereas mobility is reduced and bound fractions are high within cell-cell interfaces. Counterintuitively, molecules nevertheless accumulate in cavities, which we attribute to the geometry of the extracellular space by agent-based simulations. We further find that Nodal has a larger bound fraction than Lefty and shows a binding time of tens of seconds. Together, our measurements and simulations provide direct support for the hindered diffusion model and yield insights into the nanometer-to-micrometer-scale mechanisms that lead to macroscopic signal dispersal.


Assuntos
Proteína Nodal , Peixe-Zebra , Animais , Difusão , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Determinação Direita-Esquerda/genética , Proteína Nodal/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
J Clin Invest ; 129(6): 2485-2499, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31081799

RESUMO

Prevalence of obesity among infants and children below 5 years of age is rising dramatically, and early childhood obesity is a forerunner of obesity and obesity-associated diseases in adulthood. Childhood obesity is hence one of the most serious public health challenges today. Here, we have identified a mother-to-child lipid signaling that protects from obesity. We have found that breast milk-specific lipid species, so-called alkylglycerol-type (AKG-type) ether lipids, which are absent from infant formula and adult-type diets, maintain beige adipose tissue (BeAT) in the infant and impede the transformation of BeAT into lipid-storing white adipose tissue (WAT). Breast milk AKGs are metabolized by adipose tissue macrophages (ATMs) to platelet-activating factor (PAF), which ultimately activates IL-6/STAT3 signaling in adipocytes and triggers BeAT development in the infant. Accordingly, lack of AKG intake in infancy leads to a premature loss of BeAT and increases fat accumulation. AKG signaling is specific for infants and is inactivated in adulthood. However, in obese adipose tissue, ATMs regain their ability to metabolize AKGs, which reduces obesity. In summary, AKGs are specific lipid signals of breast milk that are essential for healthy adipose tissue development.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Glicerídeos/metabolismo , Macrófagos/metabolismo , Leite Humano/metabolismo , Adipócitos Bege/citologia , Tecido Adiposo Branco/citologia , Animais , Feminino , Glicerídeos/genética , Humanos , Lactente , Interleucina-6/genética , Interleucina-6/metabolismo , Macaca mulatta , Masculino , Camundongos , Camundongos Knockout , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA