Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 61(21): 6383-6390, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256254

RESUMO

Laser based optical applications such as imaging, ranging, and wireless communications are susceptible to environmental distortions. Inferring the strength of these optical distortions is crucial to obtaining information about the environment in which the system is operating. Our technique of inferring environmental distortion strength leverages the spreading of light's orbital angular momentum (OAM) spectrum combined with heterodyne detection. A laser encoded with OAM can be decomposed into a basis set of helical modes that spreads upon interaction with optical distortions. This mode spreading is quantified using the OAM spectrum that can be measured using mode projection or mode sorting techniques. This new technique, to the best of our knowledge, provides benefits compared to the latter two OAM detection methods such as: low-frequency noise rejection, a simpler optical receiver, lower noise floor, and an inherent optical phase component. Central to the method is the heterodyne detection of the zeroth-order OAM coefficient of a superimposed two-beam, two-frequency, probe. The measured heterodyne signal power is seen to be proportional to the coupling power of each beam's OAM spectra. To test the idea, wave-optic simulations and experiments using spatial light modulators are implemented using a simplified optical turbulence model to represent the environment. The experimental implementation agrees well with simulated and theoretical results.

2.
Opt Express ; 26(3): 2668-2674, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401804

RESUMO

An optical vortex is used to enhance the ranging accuracy of an underwater pulsed laser ranging system. An experiment is conducted whereby an underwater object is illuminated by a pulsed Gaussian beam, and both the object-reflected and scattered light are passed through a diffractive spiral phase plate prior to being imaged at the receiver. An optical vortex is formed from the spatially coherent non-scattered component of the return, providing an effective way to discriminate the desired objected reflected light from the spatially incoherent scatter. Experimental results show that the optical vortex permits a spatially coherent ballistic target return to be more easily discriminated from spatially incoherent forward scattered light up to eight attenuation lengths. The results suggest new optical sensing techniques for underwater imaging or lidar.

3.
Appl Opt ; 56(14): 4019-4024, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047532

RESUMO

The propagation behavior of high-frequency intensity-modulated signals through turbid water is of significant interest for underwater laser ranging, imaging, and communications. Prior experimental measurements have focused only on the magnitude response of the underwater optical channel to forward-scattered and unscattered modulated light. In this study we include, for the first time to our knowledge, both the magnitude and phase of the underwater optical channel to forward-scattered light. The magnitude and phase response is measured out to 1 GHz, using three different artificial scattering agents in scattering environments in excess of 25 attenuation lengths. The phase response provides additional insight into the behavior of forward-scattered light carrying high-frequency intensity modulation.

4.
Appl Opt ; 55(31): C34-C38, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27828256

RESUMO

The attenuation and temporal dispersion of beams with and without orbital angular momentum (OAM) underwater are investigated in a controlled laboratory water tank environment. Both spherical polystyrene beads and a commercial antacid are used to determine the effect of scattering particle size and shape on the results. Varying concentrations of the scattering agents were used to study the propagation of light in both minimally scattered and multiply scattered regimes (over 20 attenuation lengths). To study temporal dispersion, a custom diode seeded fiber amplified laser source is used to modulate beams up to 1 GHz, and diffractive spiral phase plates are used to compare performance over different spatial modes. We observe an increase in received signal with increasing OAM order (|m|=0, 8, and 16) under multiple scattering conditions. Initial experimental results suggest that this variation is dependent on particle shape and size. We do not observe any dependency of OAM order on temporal dispersion.

5.
Opt Express ; 24(9): 9794-805, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137593

RESUMO

In this work we experimentally demonstrated an underwater wireless optical communications (UWOC) link over a 2.96 m distance with two 445-nm fiber-pigtailed laser diodes employing Orbital Angular Momentum (OAM) to allow for spatial multiplexing. Using an on-off keying, non-return-to-zero (OOK-NRZ) modulation scheme, a data rate of 3 Gbit/s was achieved in water with an attenuation coefficient of 0.4128 m-1 at an average bit error rate (BER) of 2.073 × 10-4, well beneath the forward error correction (FEC) threshold.

6.
Appl Opt ; 50(33): 6168-78, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22108874

RESUMO

Optical detection, ranging, and imaging of targets in turbid water is complicated by absorption and scattering. It has been shown that using a pulsed laser source with a range-gated receiver or an intensity modulated source with a coherent RF receiver can improve target contrast in turbid water. A blended approach using a modulated-pulse waveform has been previously suggested as a way to further improve target contrast. However only recently has a rugged and reliable laser source been developed that is capable of synthesizing such a waveform so that the effect of the underwater environment on the propagation of a modulated pulse can be studied. In this paper, we outline the motivation for the modulated-pulse (MP) concept, and experimentally evaluate different MP waveforms: single-tone MP and pseudorandom coded MP sequences.

7.
Appl Opt ; 50(10): 1396-404, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21460906

RESUMO

A recent paper described experiments completed to study the effect of scattering on the propagation of modulated light in laboratory tank water [Appl. Opt.48, 2607 (2009)APOPAI0003-693510.1364/AO.48.002607]. Those measurements were limited to a specific scattering agent (Maalox antacid) with a fixed scattering albedo (0.95). The purpose of this paper is to study the effects of different scattering agents and scattering albedos on modulated light propagation in water. The results show that the scattering albedo affects the number of attenuation lengths that the modulated optical signal propagates without distortion, while the type of scattering agent affects the degree to which the modulation is distorted with increasing attenuation length.

8.
Opt Lett ; 35(12): 2088-90, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20548395

RESUMO

Recent work on underwater laser communication links uses polarization discrimination to improve system performance [Appl. Opt.48, 328 (2009)] [in Proceedings of IEEE Oceans 2009 (IEEE, 2009), pp. 1-4]. In the laboratory, Maalox antacid is commonly used as a scattering agent. While its scattering function closely mimics that of natural seawaters, its scattering albedo can be much higher, as Maalox particles tend to be less absorbing. We present a series of experiments where Nigrosin dye is added to Maalox in order to more accurately recreate real-world absorption and scattering properties. We consider the effect that scattering albedo has on received power and the degree of depolarization of forward-scattered light in the context of underwater laser communication links.

9.
Appl Opt ; 48(14): 2607-12, 2009 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-19424378

RESUMO

Until recently, little has been done to study the effect of higher modulation frequencies (>100 MHz) or short (<2 ns) pulse durations on forward-scattered light in ocean water. This forward-scattered light limits image resolution and may ultimately limit the bandwidth of a point-to-point optical communications link. The purpose of this work is to study the propagation of modulated light fields at frequencies up to 1 GHz. Results from laboratory tank experiments and their impact on future underwater optical imaging and communications systems are discussed.

10.
Appl Opt ; 48(2): 328-37, 2009 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-19137044

RESUMO

Free space optical links underwater have the potential to enable short range (<100 m) high-bandwidth (megabits per second) data links that have a low probability of detection and interception. The use of a retroreflecting free space optical link in water has the added advantage of allowing much of the weight and power burden of the link to remain at one end. While modulating retroreflectors have been successfully implemented in above-water links, the underwater environment introduces new challenges. The focus of this paper is to address these challenges and to investigate techniques for minimizing their effect on the link performance.

11.
Appl Opt ; 46(30): 7374-83, 2007 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17952171

RESUMO

A new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components. This new approach enhances image contrast beyond what was achieved with a previous design that processed only the composite magnitude information.


Assuntos
Lasers , Óptica e Fotônica , Interpretação Estatística de Dados , Desenho de Equipamento , Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA