Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 252: 111521, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36100173

RESUMO

The UNC-49 receptor is a Cys-loop GABA receptor that is unique to the nematode phylum. The receptor differs from mammalian GABA receptors both in amino acid sequence and pharmacology which highlights its potential as a novel anthelmintic target. Sequence differences within and near the various ligand-binding loops of the nematode receptor suggest that there could be structural differences compared to mammalian receptors that result in different pharmacological and functional features. Here we investigated three residues in the UNC-49 receptor from the parasitic nematode Haemonchus contortus: K181, E183, and T230. Analysis of these residues was conducted via site-directed mutagenesis, electrophysiology, MD simulations, and mutant cycling analysis. In the UNC-49 receptor, E183 lies in close proximity to K181 where together they appear to play a role in GABA sensitivity and pharmacology, possibly interacting via an ionic bond. While the introduction of single alanine residues at each position separately had a negative impact on GABA EC50, the double alanine mutant (K181A/E183A) exhibited wildtype-level GABA EC50 and some differences in pharmacology. Overall, this study has revealed a potentially novel role for these two residues in nematode UNC-49 GABA receptors that could aid in understanding their function.


Assuntos
Nematoides , Receptores de GABA , Animais , Receptores de GABA/genética , Receptores de GABA/química , Receptores de GABA/metabolismo , Sítios de Ligação , Nematoides/metabolismo , Ácido gama-Aminobutírico/metabolismo , Alanina , Mamíferos
2.
Int J Parasitol Drugs Drug Resist ; 8(3): 534-539, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361167

RESUMO

The UNC-49 receptor is a unique nematode γ-aminobutyric acid (GABA)-gated chloride channel that may prove to be a novel target for the development of nematocides. Here we have characterized various charged amino acid residues in and near the agonist binding site of the UNC-49 receptor from the parasitic nematode Haemonchus contorts. Utilizing the Caenorhabditis elegans GluCl crystal structure as a template, a model was generated and various charged residues [D83 (loop D), E131 (loop A), H137 (pre-loop E), R159 (Loop E), E185 (Loop B) and R241 (Loop C)] were investigated based on their location and conservation. These residues may contribute to structure, function, and molecular interactions with agonists. It was found that all residues chosen were important for receptor function to varying degrees. Results of the mutational analysis and molecular simulations suggest that R159 may be interacting with D83 by an ionic interaction that may be crucial for general GABA receptor function. We have used the results from this study as well as knowledge of residues involved in GABA receptor binding to identify sequence patterns that may assist in understanding the function of lesser known GABA receptor subunits from parasitic nematodes.


Assuntos
Haemonchus/genética , Mutação , Receptores de GABA/química , Receptores de GABA/genética , Animais , Antinematódeos/farmacologia , Sítios de Ligação , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans , Cristalização , Agonistas de Receptores de GABA-A/isolamento & purificação , Agonistas de Receptores de GABA-A/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Haemonchus/química , Haemonchus/efeitos dos fármacos , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores de GABA/efeitos dos fármacos , Receptores de GABA-A , Xenopus laevis
3.
Mol Pharmacol ; 94(5): 1289-1297, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194106

RESUMO

Nematodes exhibit a vast array of cys-loop ligand-gated ion channels with unique pharmacologic characteristics. However, many of the structural components that govern the binding of various ligands are unknown. The nematode cys-loop GABA receptor uncoordinated 49 (UNC-49) is an important receptor found at neuromuscular junctions that plays an important role in the sinusoidal movement of worms. The unique pharmacologic features of this receptor suggest that there are structural differences in the agonist binding site when compared with mammalian receptors. In this study, we examined each amino acid in one of the main agonist binding loops (loop E) via the substituted cysteine accessibility method (SCAM) and analyzed the interaction of various residues by molecular dynamic simulations. We found that of the 18 loop E mutants analyzed, H142C, R147C, and S157C had significant changes in GABA EC50 and were accessible to modification by a methanethiosulfonate reagent (MTSET) resulting in a change in I GABA In addition, the residue H142, which is unique to nematode UNC-49 GABA receptors, appears to play a negative role in GABA sensitivity as its mutation to cysteine increased sensitivity to GABA and caused the UNC-49 receptor partial agonist 5-aminovaleric acid (DAVA) to behave as a full agonist. Overall, this study has revealed potential differences in the agonist binding pocket between nematode UNC-49 and mammalian GABA receptors that could be exploited in the design of novel anthelmintics.


Assuntos
Cisteína/metabolismo , Nematoides/metabolismo , Receptores de GABA/metabolismo , Sequência de Aminoácidos , Animais , Anti-Helmínticos/metabolismo , Anti-Helmínticos/farmacologia , Sítios de Ligação , Desenho de Fármacos , Mutagênese Sítio-Dirigida , Nematoides/efeitos dos fármacos , Receptores de GABA/química , Receptores de GABA/efeitos dos fármacos , Homologia de Sequência de Aminoácidos
4.
Invert Neurosci ; 18(1): 1, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29185074

RESUMO

Xenopus laevis oocytes have been extensively used as a heterologous expression system for the study of ion channels. While used successfully worldwide as tool for expressing and characterizing ion channels from a wide range of species, the limited longevity of oocytes once removed from the animal can pose significant challenges. In this study, we evaluate a simple and useful method that extends the longevity of Xenopus oocytes after removal from the animal and quantitatively assessed the reliability of the electrophysiological date obtained. The receptor used for this study was the UNC-49 receptor originally isolated from the sheep parasite, Haemonchus contortus. Overall, we found that immediate storage of the ovary in supplemented ND96 storage buffer at 4 °C could extend their use for up to 17 days with almost 80% providing reliable electrophysiological data. This means that a single extraction can provide at least 3 weeks of experiments. In addition, we examined 24-day-old oocytes (week 4) extracted from a single frog and also obtained reliable data using the same approach. However, 50% of these oocytes were usable for full dose-response experiments. Overall, we did find that this method has the potential to significantly extend the use of single oocyte extractions for two-electrode voltage clamp electrophysiology.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Longevidade/fisiologia , Animais , Biofísica , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/efeitos dos fármacos , Canais Iônicos de Abertura Ativada por Ligante/genética , Longevidade/efeitos dos fármacos , Longevidade/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Microinjeções , Oócitos , Técnicas de Patch-Clamp , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Fatores de Tempo , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA