Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nat Metab ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867022

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.

2.
Biochem Pharmacol ; : 116249, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697308

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is common worldwide. Genes and proteins contributing to drug disposition may show altered expression as MASLD progresses. To assess this further, we undertook transcriptomic and proteomic analysis of 137 pharmacogenes in liver biopsies from a large MASLD cohort. We performed sequencing on RNA from 216 liver biopsies (206 MASLD and 10 controls). Untargeted mass spectrometry proteomics was performed on a 103 biopsy subgroup. Selected RNA sequencing signals were replicated with an additional 187 biopsies. Comparison of advanced MASLD (fibrosis score 3/4) with milder disease (fibrosis score 0-2) by RNA sequencing showed significant alterations in expression of certain phase I, phase II and ABC transporters. For cytochromes P450, CYP2C19 showed the most significant decreased expression (30 % of that in mild disease) but significant decreased expression of other CYPs (including CYP2C8 and CYP2E1) also occurred. CYP2C19 also showed a significant decrease comparing the inflammatory form of MASLD (MASH) with non-MASH biopsies. Findings for CYP2C19 were confirmed in the replication cohort. Proteomics on the original discovery cohort confirmed decreased levels of several CYPs as MASLD advanced but this decrease was greatest for CYP2C19 where levels fell to 40 % control. This decrease may result in decreased CYP2C19 activity that could be problematic for prescription of drugs activated or metabolized by CYP2C19 as MASLD advances. More limited decreases for other P450s suggest fewer issues with non-CYP2C19 drug substrates. Negative correlations at RNA level between CYP2C19 and several cytokine genes provided initial insights into the mechanism underlying decreased expression.

3.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664009

RESUMO

Seizures are generally associated with epilepsy but may also be a symptom of many other neurological conditions. A hallmark of a seizure is the intensity of the local neuronal activation, which can drive large-scale gene transcription changes. Such changes in the transcriptional profile likely alter neuronal function, thereby contributing to the pathological process. Therefore, there is a strong clinical imperative to characterize how gene expression is changed by seizure activity. To this end, we developed a simplified ex vivo technique for studying seizure-induced transcriptional changes. We compared the RNA sequencing profile in mouse neocortical tissue with up to 3 h of epileptiform activity induced by 4-aminopyridine (4AP) relative to control brain slices not exposed to the drug. We identified over 100 genes with significantly altered expression after 4AP treatment, including multiple genes involved in MAPK, TNF, and neuroinflammatory signaling pathways, all of which have been linked to epilepsy previously. Notably, the patterns in male and female brain slices were almost identical. Various immediate early genes were among those showing the largest upregulation. The set of down-regulated genes included ones that might be expected either to increase or to decrease neuronal excitability. In summary, we found the seizure-induced transcriptional profile complex, but the changes aligned well with an analysis of published epilepsy-associated genes. We discuss how simple models may provide new angles for investigating seizure-induced transcriptional changes.


Assuntos
4-Aminopiridina , Neocórtex , Transcriptoma , Animais , Neocórtex/metabolismo , Neocórtex/efeitos dos fármacos , Feminino , Masculino , Camundongos , 4-Aminopiridina/farmacologia , Convulsões/genética , Convulsões/metabolismo , Convulsões/fisiopatologia , Análise de Sequência de RNA/métodos , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Camundongos Endogâmicos C57BL
4.
Cell ; 186(26): 5677-5689, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38065099

RESUMO

RNA sequencing in situ allows for whole-transcriptome characterization at high resolution, while retaining spatial information. These data present an analytical challenge for bioinformatics-how to leverage spatial information effectively? Properties of data with a spatial dimension require special handling, which necessitate a different set of statistical and inferential considerations when compared to non-spatial data. The geographical sciences primarily use spatial data and have developed methods to analye them. Here we discuss the challenges associated with spatial analysis and examine how we can take advantage of practice from the geographical sciences to realize the full potential of spatial information in transcriptomic datasets.


Assuntos
Análise de Dados , Análise Espacial , Transcriptoma , Biologia Computacional , Perfilação da Expressão Gênica , Transcriptoma/genética
5.
PLoS Genet ; 19(11): e1010777, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011284

RESUMO

Abnormalities of the arterial valves, including bicuspid aortic valve (BAV) are amongst the most common congenital defects and are a significant cause of morbidity as well as predisposition to disease in later life. Despite this, and compounded by their small size and relative inaccessibility, there is still much to understand about how the arterial valves form and remodel during embryogenesis, both at the morphological and genetic level. Here we set out to address this in human embryos, using Spatial Transcriptomics (ST). We show that ST can be used to investigate the transcriptome of the developing arterial valves, circumventing the problems of accurately dissecting out these tiny structures from the developing embryo. We show that the transcriptome of CS16 and CS19 arterial valves overlap considerably, despite being several days apart in terms of human gestation, and that expression data confirm that the great majority of the most differentially expressed genes are valve-specific. Moreover, we show that the transcriptome of the human arterial valves overlaps with that of mouse atrioventricular valves from a range of gestations, validating our dataset but also highlighting novel genes, including four that are not found in the mouse genome and have not previously been linked to valve development. Importantly, our data suggests that valve transcriptomes are under-represented when using commonly used databases to filter for genes important in cardiac development; this means that causative variants in valve-related genes may be excluded during filtering for genomic data analyses for, for example, BAV. Finally, we highlight "novel" pathways that likely play important roles in arterial valve development, showing that mouse knockouts of RBP1 have arterial valve defects. Thus, this study has confirmed the utility of ST for studies of the developing heart valves and broadens our knowledge of the genes and signalling pathways important in human valve development.


Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Humanos , Camundongos , Animais , Doenças das Valvas Cardíacas/genética , Valva Aórtica/anormalidades , Doença da Válvula Aórtica Bicúspide/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/genética
6.
J Hepatol ; 79(2): 296-313, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224925

RESUMO

BACKGROUND & AIMS: The progression of non-alcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS: C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH-inducing diets or standard chow for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and µMT mice (containing B cells only in the gastrointestinal tract) were fed a choline-deficient high-fat diet, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with simple steatosis, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and single-cell RNA-sequencing analysis were performed in liver and gastrointestinal tissue to characterise immune cells in mice and humans. RESULTS: Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B cells; additionally, we observed a positive correlation between IgA levels and activated FcRg+ hepatic myeloid cells, as well the extent of liver fibrosis. CONCLUSIONS: Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for the treatment of NASH. IMPACT AND IMPLICATIONS: There is currently no effective treatment for non-alcoholic steatohepatitis (NASH), which is associated with a substantial healthcare burden and is a growing risk factor for hepatocellular carcinoma (HCC). We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we show that the absence of B cells prevented HCC development. B cell-intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets for combinatorial NASH therapies against inflammation and fibrosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microbiota , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/complicações , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Camundongos Endogâmicos C57BL , Fígado/patologia , Fibrose , Cirrose Hepática/complicações , Camundongos Transgênicos , Imunoglobulina A/metabolismo , Imunoglobulina A/farmacologia , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos
7.
Nat Metab ; 5(4): 572-578, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37037945

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common, progressive liver disease strongly associated with the metabolic syndrome. It is unclear how progression of NAFLD towards cirrhosis translates into systematic changes in circulating proteins. Here, we provide a detailed proteo-transcriptomic map of steatohepatitis and fibrosis during progressive NAFLD. In this multicentre proteomic study, we characterize 4,730 circulating proteins in 306 patients with histologically characterized NAFLD and integrate this with transcriptomic analysis in paired liver tissue. We identify circulating proteomic signatures for active steatohepatitis and advanced fibrosis, and correlate these with hepatic transcriptomics to develop a proteo-transcriptomic signature of 31 markers. Deconvolution of this signature by single-cell RNA sequencing reveals the hepatic cell types likely to contribute to proteomic changes with disease progression. As an exemplar of use as a non-invasive diagnostic, logistic regression establishes a composite model comprising four proteins (ADAMTSL2, AKR1B10, CFHR4 and TREM2), body mass index and type 2 diabetes mellitus status, to identify at-risk steatohepatitis.


Assuntos
Perfilação da Expressão Gênica , Hepatopatia Gordurosa não Alcoólica , Proteômica , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Massa Corporal , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Progressão da Doença , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Imuno-Histoquímica , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Modelos Logísticos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sistema de Registros , Análise da Expressão Gênica de Célula Única
9.
Front Immunol ; 13: 1035532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439115

RESUMO

Macrophages are key target cells of Zika virus (ZIKV) infection, implicated as a viral reservoir seeding sanctuary sites such as the central nervous system and testes. This rests on the apparent ability of macrophages to sustain ZIKV replication without experiencing cytopathic effects. ZIKV infection of macrophages triggers an innate immune response involving type I interferons (IFN-I), key antiviral cytokines that play a complex role in ZIKV pathogenesis in animal models. To investigate the functional role of the IFN-I response we generated human induced pluripotent stem cell (iPSC)-derived macrophages from a patient with complete deficiency of IFNAR2, the high affinity IFN-I receptor subunit. Accompanying the profound defect of IFN-I signalling in IFNAR2 deficient iPS-macrophages we observed significantly enhanced ZIKV replication and cell death, revealing the inherent cytopathicity of ZIKV towards macrophages. These observations were recapitulated by genetic and pharmacological ablation of IFN-I signalling in control iPS-macrophages and extended to a model of iPS-microglia. Thus, the capacity of macrophages to support noncytolytic ZIKV replication depends on an equilibrium set by IFN-I, suggesting that innate antiviral responses might counterintuitively promote ZIKV persistence via the maintenance of tissue viral reservoirs relevant to pathogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infecção por Zika virus , Zika virus , Animais , Humanos , Receptor de Interferon alfa e beta/genética , Microglia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Interferons/farmacologia , Antivirais/uso terapêutico
10.
iScience ; 25(9): 104949, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36065182

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly understood. Here, we studied metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-associated gene variants (PNPLA3, TM6SF2, and HSD17B13). The study demonstrates dysregulated liver metabolic pathways which may contribute to the progression of NAFLD.

11.
BMC Bioinformatics ; 23(1): 302, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879662

RESUMO

BACKGROUND: Probabilistic functional integrated networks (PFINs) are designed to aid our understanding of cellular biology and can be used to generate testable hypotheses about protein function. PFINs are generally created by scoring the quality of interaction datasets against a Gold Standard dataset, usually chosen from a separate high-quality data source, prior to their integration. Use of an external Gold Standard has several drawbacks, including data redundancy, data loss and the need for identifier mapping, which can complicate the network build and impact on PFIN performance. Additionally, there typically are no Gold Standard data for non-model organisms. RESULTS: We describe the development of an integration technique, ssNet, that scores and integrates both high-throughput and low-throughout data from a single source database in a consistent manner without the need for an external Gold Standard dataset. Using data from Saccharomyces cerevisiae we show that ssNet is easier and faster, overcoming the challenges of data redundancy, Gold Standard bias and ID mapping. In addition ssNet results in less loss of data and produces a more complete network. CONCLUSIONS: The ssNet method allows PFINs to be built successfully from a single database, while producing comparable network performance to networks scored using an external Gold Standard source and with reduced data loss.


Assuntos
Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae , Armazenamento e Recuperação da Informação , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Brief Funct Genomics ; 21(4): 243-269, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35552596

RESUMO

Interactome analyses have traditionally been applied to yeast, human and other model organisms due to the availability of protein-protein interaction data for these species. Recently, these techniques have been applied to more diverse species using computational interaction prediction from genome sequence and other data types. This review describes the various types of computational interactome networks that can be created and how they have been used in diverse eukaryotic species, highlighting some of the key interactome studies in non-model organisms.


Assuntos
Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae , Biologia Computacional/métodos , Humanos , Mapeamento de Interação de Proteínas/métodos
13.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35328378

RESUMO

Mechanical loading exerts a profound influence on bone density and architecture, but the exact mechanism is unknown. Our study shows that expression of the neurological transcriptional factor zinc finger of the cerebellum 1 (ZIC1) is markedly increased in trabecular bone biopsies in the lumbar spine compared with the iliac crest, skeletal sites of high and low mechanical stress, respectively. Human trabecular bone transcriptome analyses revealed a strong association between ZIC1 mRNA levels and gene transcripts characteristically associated with osteoblasts, osteocytes and osteoclasts. This supposition is supported by higher ZIC1 expression in iliac bone biopsies from postmenopausal women with osteoporosis compared with age-matched control subjects, as well as strongly significant inverse correlation between ZIC1 mRNA levels and BMI-adjusted bone mineral density (BMD) (Z-score). ZIC1 promoter methylation was decreased in mechanically loaded vertebral bone compared to unloaded normal iliac bone, and its mRNA levels correlated inversely with ZIC1 promoter methylation, thus linking mechanical stress to epigenetic control of gene expression. The findings were corroborated in cultures of rat osteoblast progenitors and osteoblast-like cells. This study demonstrates for the first time how skeletal epigenetic changes that are affected by mechanical forces give rise to marked alteration in bone cell transcriptional activity and translate to human bone pathophysiology.


Assuntos
Osteoporose Pós-Menopausa , Animais , Densidade Óssea/genética , Epigênese Genética , Feminino , Humanos , Ílio/metabolismo , Vértebras Lombares/metabolismo , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/patologia , RNA Mensageiro/genética , Ratos , Estresse Mecânico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Am J Geriatr Psychiatry ; 30(9): 964-975, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35283023

RESUMO

OBJECTIVES: The objective of this study was to investigate the expression of genes in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), both at the mild cognitive impairment (MCI) and dementia stages, to improve our understanding of disease pathophysiology and investigate the potential for diagnostic and prognostic biomarkers based on mRNA expression. DESIGN: Cross-sectional observational study. SETTING: University research center. PARTICIPANTS: People with MCI with Lewy bodies (MCI-LB, n=55), MCI-AD (n=19), DLB (n=38), AD (n=24) and a cognitively unimpaired comparison group (n=28). MEASUREMENTS: Ribonucleic acid sequencing of whole blood. Differentially expressed genes (DEGs) were identified and gene set enrichment analysis was carried out. RESULTS: Compared with the cognitively unimpaired group, there were 22 DEGs in MCI-LB/DLB and 61 DEGs in MCI-AD/AD. DEGS were also identified when comparing the two disease groups. Expression of ANP32A was associated with more rapid cognitive decline in MCI-AD/AD. Gene set enrichment analysis identified downregulation in gene sets including MYC targets and oxidative phosphorylation in MCI-LB/DLB; upregulation of immune and inflammatory responses in MCI-AD/AD; and upregulation of interferon-α and -γ responses in MCI-AD/AD compared with MCI-LB/DLB. CONCLUSION: This study identified multiple DEGs in MCI-LB/DLB and MCI-AD/AD. One of these DEGs, ANP32A, may be a prognostic marker in AD. Genes related to mitochondrial function were downregulated in MCI-LB/DLB. Previously reported upregulation of genes associated with inflammation and immune responses in MCI-AD/AD was confirmed in this cohort. Differences in interferon responses between MCI-AD/AD and MCI-LB/DLB suggest that there are key differences in peripheral immune responses between these diseases.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença por Corpos de Lewy , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/diagnóstico , Estudos Transversais , Humanos , Doença por Corpos de Lewy/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA
15.
JHEP Rep ; 4(2): 100409, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35072021

RESUMO

BACKGROUND & AIMS: Serum microRNA (miRNA) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages. METHODS: We profiled 2,083 serum miRNAs in a discovery cohort (183 cases with NAFLD representing the complete NAFLD spectrum and 10 population controls). miRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional cases with NAFLD and 15 population controls by quantitative reverse transcriptase PCR. RESULTS: Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages, but miR-193a-5p consistently showed increased levels in all comparisons. Relative to NAFL/non-alcoholic steatohepatitis (NASH) with mild fibrosis (stage 0/1), 3 miRNAs (miR-193a-5p, miR-378d, and miR378d) were increased in cases with NASH and clinically significant fibrosis (stages 2-4), 7 (miR193a-5p, miR-378d, miR-378e, miR-320b, miR-320c, miR-320d, and miR-320e) increased in cases with NAFLD activity score (NAS) 5-8 compared with lower NAS, and 3 (miR-193a-5p, miR-378d, and miR-378e) increased but 1 (miR-19b-3p) decreased in steatosis, activity, and fibrosis (SAF) activity score 2-4 compared with lower SAF activity. The significant findings for miR-193a-5p were replicated in the additional cohort with NAFLD. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n = 80); liver GPX8 levels correlated positively with serum miR-193a-5p. CONCLUSIONS: Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD. LAY SUMMARY: MicroRNAs (miRNAs) are small pieces of nucleic acid that may turn expression of genes on or off. These molecules can be detected in the blood circulation, and their levels in blood may change in liver disease including non-alcoholic fatty liver disease (NAFLD). To see if we could detect specific miRNA associated with advanced stages of NAFLD, we carried out miRNA sequencing in a group of 183 patients with NAFLD of varying severity together with 10 population controls. We found that a number of miRNAs showed changes, mainly increases, in serum levels but that 1 particular miRNA miR-193a-5p consistently increased. We confirmed this increase in a second group of cases with NAFLD. Measuring this miRNA in a blood sample may be a useful way to determine whether a patient has advanced NAFLD without an invasive liver biopsy.

17.
Nat Commun ; 12(1): 6848, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824199

RESUMO

Traditional drug discovery faces a severe efficacy crisis. Repurposing of registered drugs provides an alternative with lower costs and faster drug development timelines. However, the data necessary for the identification of disease modules, i.e. pathways and sub-networks describing the mechanisms of complex diseases which contain potential drug targets, are scattered across independent databases. Moreover, existing studies are limited to predictions for specific diseases or non-translational algorithmic approaches. There is an unmet need for adaptable tools allowing biomedical researchers to employ network-based drug repurposing approaches for their individual use cases. We close this gap with NeDRex, an integrative and interactive platform for network-based drug repurposing and disease module discovery. NeDRex integrates ten different data sources covering genes, drugs, drug targets, disease annotations, and their relationships. NeDRex allows for constructing heterogeneous biological networks, mining them for disease modules, prioritizing drugs targeting disease mechanisms, and statistical validation. We demonstrate the utility of NeDRex in five specific use-cases.


Assuntos
Bases de Dados Factuais , Reposicionamento de Medicamentos/métodos , Algoritmos , Biologia Computacional , Doença/classificação , Doença/genética , Humanos , Bases de Conhecimento , Fluxo de Trabalho
18.
Hepatology ; 74(5): 2452-2466, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34105780

RESUMO

BACKGROUND AND AIMS: NAFLD is the most common liver disease worldwide. NASH, the progressive form of NAFLD, and advanced fibrosis are associated with poor outcomes. We searched for their noninvasive biomarkers. APPROACH AND RESULTS: Global RNA sequencing of liver tissue from 98 patients with biopsy-proven NAFLD was performed. Unsupervised hierarchical clustering well distinguished NASH from nonalcoholic fatty liver (NAFL), and patients with NASH exhibited molecular abnormalities reflecting their pathological features. Transcriptomic analysis identified proteins up-regulated in NASH and/or advanced fibrosis (stage F3-F4), including matricellular glycoprotein thrombospondin-2 (TSP-2), encoded by the thrombospondin 2 (THBS2) gene. The intrahepatic THBS2 expression level showed the highest areas under the receiver operating characteristic curves (AUROCs) of 0.915 and 0.957 for diagnosing NASH and advanced fibrosis, respectively. THBS2 positively correlated with inflammation and ballooning according to NAFLD activity score, serum aspartate aminotransferase and hyaluronic acid (HA) levels, and NAFLD Fibrosis Score (NFS). THBS2 was associated with extracellular matrix and collagen biosynthesis, platelet activation, caspase-mediated cleavage of cytoskeletal proteins, and immune cell infiltration. Serum TSP-2 expression was measured in 213 patients with biopsy-proven NAFLD, was significantly higher in NASH than in NAFL, and increased parallel to fibrosis stage. The AUROCs for predicting NASH and advanced fibrosis were 0.776 and 0.856, respectively, which were comparable to Fibrosis-4 index, serum HA level, and NFS in advanced fibrosis diagnosis. Serum TSP-2 level and platelet count were independent predictors of NASH and advanced fibrosis. Serum TSP-2 levels could stratify patients with NAFLD according to the risk of hepatic complications, including liver cancer and decompensated cirrhotic events. CONCLUSIONS: TSP-2 may be a useful biomarker for NASH and advanced fibrosis diagnosis in patients with NAFLD.


Assuntos
Cirrose Hepática/sangue , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Trombospondinas/sangue , Trombospondinas/genética , Transcriptoma/genética , Adulto , Idoso , Área Sob a Curva , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Biópsia , Feminino , Seguimentos , Perfilação da Expressão Gênica/métodos , Humanos , Ácido Hialurônico/sangue , Fígado/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Contagem de Plaquetas , Prognóstico , Curva ROC , Estudos Retrospectivos , Regulação para Cima/genética
19.
Redox Biol ; 41: 101924, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33812333

RESUMO

Ultraviolet B radiation (UVB) exerts pleiotropic effects on human skin. DNA damage response and repair pathways are activated by UVB; if damage cannot be repaired, apoptosis ensues. Although cumulative UVB exposure predisposes to skin cancer, UVB phototherapy is widely used as an effective treatment for psoriasis. Previous studies defined the therapeutic action spectrum of UVB and showed that psoriasis is resistant to apoptosis. This study aimed to investigate early molecular responses within psoriasis plaques following irradiation with single equi-erythemogenic doses of clinically-effective (311 nm, narrow-band) compared to clinically-ineffective (290 nm) UVB. Forty-eight micro-dissected epidermal samples from 20 psoriatic patients were analyzed using microarrays. Our bioinformatic analysis compared gene expression between 311 nm irradiated, 290 nm irradiated and control psoriasis epidermis to specifically identify 311 nm UVB differentially expressed genes (DEGs) and their upstream regulatory pathways. Key DEGs and pathways were validated by immunohistochemical analysis. There was a dynamic induction and repression of 311 nm UVB DEGs between 6 h and 18 h, only a limited number of DEGs maintained their designated expression status between time-points. Key disease and function pathways included apoptosis, cell death, cell migration and leucocyte chemotaxis. DNA damage response pathways, NRF2-mediated oxidative stress response and P53 signalling were key nodes, interconnecting apoptosis and cell cycle arrest. Interferon signalling, dendritic cell maturation, granulocyte adhesion and atherosclerotic pathways were also differentially regulated. Consistent with these findings, top transcriptional regulators of 311 nm UVB DEGs related to: a) apoptosis, DNA damage response and cell cycle control; b) innate/acquired immune regulation and inflammation; c) hypoxia/redox response and angiogenesis; d) circadian rhythmicity; f) EGR/AP1 signalling and keratinocyte differentiation; and g) mitochondrial biogenesis. This research provides important insights into the molecular targets of 311 nm UVB, underscoring key roles for apoptosis and cell death. These and the other key pathways delineated may be central to the therapeutic effects of 311 nm in psoriasis.


Assuntos
Psoríase , Terapia Ultravioleta , Ritmo Circadiano , Epiderme/metabolismo , Humanos , Oxirredução , Psoríase/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA