Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744599

RESUMO

Living organisms use both chemical and mechanical stimuli to survive in their environment. Substrate-borne vibrations play a significant role in mediating behaviors in animals and inducing physiological responses in plants, leading to the emergence of the discipline of biotremology. Biotremology is experiencing rapid growth both in fundamental research and in applications like pest control, drawing attention from diverse audiences. As parallels with concepts and approaches in chemical ecology emerge, there is a pressing need for a shared standardized vocabulary in the area of overlap for mutual understanding. In this article, we propose an updated set of terms in biotremology rooted in chemical ecology, using the suffix '-done' derived from the classic Greek word 'δονέω' (pronounced 'doneo'), meaning 'to shake'.

2.
Am Nat ; 198(3): 333-346, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403320

RESUMO

AbstractStudents of speciation debate the role of performance trade-offs across different environments early in speciation. We tested for early performance trade-offs with a host shift experiment using a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). In this clade of plant-feeding insects, different species live on different host plants and exhibit strong behavioral and physiological host specialization. After five generations, the experimental host shifts resulted either in no adaptation or in adaptation without specialization. The latter result was more likely in sympatry; in allopatry, populations on novel host plants were more likely to become extinct. We conclude that in the early stages of speciation, adaptation to novel host plants does not necessarily bring about performance trade-offs on ancestral environments. Adaptation may be facilitated rather than hindered by gene flow, which prevents extinction. Additional causes of specialization and assortative mating may be required if colonization of novel environments is to result in speciation.


Assuntos
Adaptação Fisiológica , Hemípteros , Animais , Insetos , Plantas , Simpatria
3.
Oecologia ; 194(1-2): 1-13, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32533358

RESUMO

Plant defenses that respond to the threat of herbivory require accurate sensing of the presence of herbivores. Herbivory cues include mechanical damage, elicitors from insect saliva or eggs, and airborne volatiles emitted by wounded plants. Plants can also respond to the leaf vibrations produced by chewing herbivores. However, previous studies of the influence of feeding vibrations on plant defenses have been limited to single species pairs. In this study we test the hypothesis that chewing vibrations differ among herbivore species, both in their acoustic features and in their potential effect on plant defense responses. We first compare the acoustic traits of larval feeding vibrations in ten species from six families of Lepidoptera and one family of Hymenoptera. We then test responses of Arabidopsis thaliana plants to variation among feeding vibrations of different individuals of one species, and to feeding vibrations of two species, including a pierid butterfly and a noctuid moth. All feeding vibrations consisted of repetitive pulses of vibration associated with leaf tissue removal, although chewing rates varied between species and between large and small individuals within species. The frequency spectra of the vibrations generated by leaf feeding were similar across all ten species. Induced increases in anthocyanins in A. thaliana did not differ when plants were played vibrations from different individuals, or vibrations of two species of herbivores with different chewing rates, when amplitude was held constant. These results suggest that feeding vibrations provide a consistent set of cues for plant recognition of herbivores.


Assuntos
Herbivoria , Vibração , Acústica , Animais , Humanos , Insetos , Mastigação , Folhas de Planta
4.
Front Plant Sci ; 10: 1586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850048

RESUMO

Feeding by chewing insects induces chemical defenses in plants that are regulated by the jasmonic acid (JA) pathway. Jasmonates are usually quantified by liquid chromatography-mass spectrometry (LC-MS) analysis of precursors and products in the biosynthetic pathway or inferred from the extraction and expression of genes known to respond to elevated levels of JA. Both approaches are costly and time consuming. To address these limitations, we developed a rapid reporter for the synthesis of JA based on the OPR3promoter:YFP-PTS1. Yellow fluorescent protein (YFP) fluorescence was increased by mechanical wounding and methyl jasmonate (MeJA) treatment and by caterpillar feeding. To develop an optimal sampling time for a quantitative bioassay, OPR3promoter:YFP-PTS1 plants were sampled at 1, 2, 3, and 24 h after treatment with 115 µM MeJA. The first increase in YFP fluorescence was detected at 2 h and remained elevated 3 and 24 h later; as a result, 3 h was chosen as the sampling time for a quantitative bioassay of jasmonate response to insect attack. Feeding by Pieris rapae caterpillars induced a 1.8-fold increase in YFP fluorescence, consistent with the known induction of JA production by this insect. We also assessed the utility of this reporter in studies of plant responses to caterpillar feeding vibrations, which are known to potentiate the JA-dependent production of chemical defenses. Pretreatment with feeding vibrations increased expression of the OPR3promoter:YFP-PTS1 in response to 14 µM MeJA. Feeding vibrations did not potentiate responses at higher MeJA concentrations, suggesting that potentiating effects of prior treatments can only be detected when plants are below a response threshold to the elicitor. The expression of OPR3 does not indicate levels of specific downstream jasmonates and quantification of specific jasmonates still requires detailed analysis by LC-MS. However, OPR3 expression does provide a rapid and inexpensive way to screen large numbers of plants for the involvement of jasmonate signaling in their response to a wide variety of treatments, and to study the induction and expression of AtOPR3.

5.
Front Plant Sci ; 10: 810, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297123

RESUMO

Plant perception of insect feeding involves integration of the multiple signals involved: wounding, oral secretions, and substrate borne feeding vibrations. Although plant responses to wounding and oral secretions have been studied, little is known about how signals from the rapidly transmitted vibrations caused by chewing insect feeding are integrated to produce effects on plant defenses. In this study, we examined whether 24 h of insect feeding vibrations caused changes in levels of phytohormones and volatile organic compounds (VOCs) produced by leaves of Arabidopsis thaliana when they were subjected to just feeding vibrations or feeding vibrations and wounding + methyl jasmonate (MeJA), compared to their respective controls of silent sham or wounding + MeJA. We showed that feeding vibrations alone caused a decrease in the concentrations of most phytohormones, compared to those found in control plants receiving no vibrations. When feeding vibrations were combined with wounding and application of MeJA, the results were more complex. For hormones whose levels were induced by wounding and MeJA (jasmonic acid, indole-3-butyric acid), the addition of feeding vibrations caused an even larger response. If the level of hormone was unchanged by wounding and MeJA compared with controls, then the addition of feeding vibrations had little effect. The levels of some VOCs were influenced by the treatments. Feeding vibrations alone caused an increase in ß-ionone and decrease in methyl salicylate, and wounding + MeJA alone caused a decrease in benzaldehyde and methyl salicylate. When feeding vibrations were combined with wounding + MeJA, the effects on ß-ionone and methyl salicylate were similar to those seen with feeding vibrations alone, and levels of benzaldehyde remained low as seen with wounding + MeJA alone. The widespread downregulation of plant hormones observed in this study is also seen in plant responses to cold, suggesting that membrane fluidity changes and/or downstream signaling may be common to both phenomena.

6.
Methods Mol Biol ; 1991: 141-157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041771

RESUMO

Testing plant responses to natural sources of mechanical vibration requires methods that can precisely reproduce complex vibrational stimuli. Here we describe a method for conducting high-fidelity vibrational playbacks using consumer audio equipment and custom-written signal processing software.


Assuntos
Estimulação Acústica/métodos , Arabidopsis/fisiologia , Mecanotransdução Celular , Folhas de Planta/fisiologia , Vibração , Estimulação Acústica/instrumentação , Animais , Herbivoria , Insetos
7.
Ecol Evol ; 8(4): 1954-1965, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468015

RESUMO

The importance and prevalence of phylogenetic tracking between hosts and dependent organisms caused by co-evolution and shifting between closely related host species have been debated for decades. Most studies of phylogenetic tracking among phytophagous insects and their host plants have been limited to insects feeding on a narrow range of host species. However, narrow host ranges can confound phylogenetic tracking (phylogenetic tracking hypothesis) with host shifting between hosts of intermediate relationship (intermediate hypothesis). Here, we investigated the evolutionary history of the Enchenopa binotata complex of treehoppers. Each species in this complex has high host fidelity, but the entire complex uses hosts across eight plant orders. The phylogenies of E. binotata were reconstructed to evaluate whether (1) tracking host phylogeny; or (2) shifting between intermediately related host plants better explains the evolutionary history of E. binotata. Our results suggest that E. binotata primarily shifted between both distant and intermediate host plants regardless of host phylogeny and less frequently tracked the phylogeny of their hosts. These findings indicate that phytophagous insects with high host fidelity, such as E. binotata, are capable of adaptation not only to closely related host plants but also to novel hosts, likely with diverse phenology and defense mechanisms.

8.
J Exp Biol ; 221(Pt 6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29367275

RESUMO

Animal movement decisions involve an action-perception cycle in which sensory flow influences motor output. Key aspects of the action-perception cycle involved in movement decisions can be identified by integrating path information with measurement of environmental cues. We studied mate searching in insects for which the primary sensory cues are mechanical vibrations traveling through the tissues of living plants. We mapped search paths of male thornbug treehoppers locating stationary females through an exchange of vibrational signals. At each of the males' sampling locations, we used two-dimensional laser vibrometry to measure stem motion produced by female vibrational signals. We related properties of the vibrational signals to the males' movement direction, inter-sample distance and accuracy. Males experienced gradients in signal amplitude and in the whirling motion of the plant stem, and these gradients were influenced to varying degrees by source distance and local stem properties. Males changed their sampling behavior during the search, making longer inter-sample movements farther from the source, where uncertainty is higher. The primary directional cue used by searching males was the direction of wave propagation, and males made more accurate decisions when signal amplitude was higher, when time delays were longer between the front and back legs, and when female responses were short in duration. The whirling motion of plant stems, including both the eccentricity and the major axes of motion, is a fundamental feature of vibrational environments on living plants, and we show for the first time that it has important influences on the decisions of vibrationally homing insects.


Assuntos
Comunicação Animal , Hemípteros/fisiologia , Comportamento Sexual Animal , Vibração , Animais , Sinais (Psicologia) , Feminino , Masculino , Movimento
9.
Proc Biol Sci ; 279(1743): 3820-6, 2012 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-22787019

RESUMO

Within animal groups, individuals can learn of a predator's approach by attending to the behaviour of others. This use of social information increases an individual's perceptual range, but can also lead to the propagation of false alarms. Error copying is especially likely in species that signal collectively, because the coordination required for collective displays relies heavily on social information. Recent evidence suggests that collective behaviour in animals is, in part, regulated by negative feedback. Negative feedback may reduce false alarms by collectively signalling animals, but this possibility has not yet been tested. We tested the hypothesis that negative feedback increases the accuracy of collective signalling by reducing the production of false alarms. In the treehopper Umbonia crassicornis, clustered offspring produce collective signals during predator attacks, advertising the predator's location to the defending mother. Mothers signal after evicting the predator, and we show that this maternal communication reduces false alarms by offspring. We suggest that maternal signals elevate offspring signalling thresholds. This is, to our knowledge, the first study to show that negative feedback can reduce false alarms by collectively behaving groups.


Assuntos
Comunicação Animal , Cadeia Alimentar , Hemípteros/fisiologia , Acelerometria , Animais , Feminino , Florida , Heterópteros , Comportamento Materno , Gravação em Fita , Vibração
10.
Mol Ecol ; 20(10): 2041-3, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21692234

RESUMO

Food webs involving plants, herbivorous insects and their predators account for 75% of terrestrial biodiversity (Price 2002). Within the abundant arthropod community on plants, myriad ecological and social interactions depend on the perception and production of plant-borne mechanical vibrations (Hill 2008). Study of ecological relationships has shown, for example, that termites monitor the vibrations produced by competing colonies in the same tree trunk (Evans et al. 2009), that stink bugs and spiders attend to the incidental vibrations produced by insects feeding or walking on plants (Pfannenstiel et al. 1995, Barth 1998) and that caterpillars can distinguish among the foraging-related vibrations produced by their invertebrate predators (Castellanos & Barbosa 2006). Study of social interactions has revealed that many insects and spiders have evolved the ability to generate intricate patterns of substrate vibration, allowing them to communicate with potential mates or members of their social group (Cokl & Virant-Doberlet 2003; Hill 2008). Surprisingly, research on the role of substrate vibrations in social and ecological interactions has for the most part proceeded independently, in spite of evidence from other communication modalities ­ acoustic, visual, chemical and electrical ­ that predators attend to the signals of their prey (Zuk & Kolluru 1998; Stoddard 1999). The study by Virant-Doberlet et al. (2011) in this issue of Molecular Ecology now helps bring these two areas of vibration research together, showing that the foraging behaviour of a spider is influenced by the vibrational mating signals of its leafhopper prey.


Assuntos
Comunicação Animal , Comportamento Predatório/fisiologia , Aranhas/fisiologia , Animais , Feminino , Hemípteros/fisiologia , Masculino , Vibração
11.
Evolution ; 64(11): 3158-71, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20624180

RESUMO

Selection on advertisement signals arises from interacting sources including female choice, male-male competition, and the communication channel (i.e., the signaling environment). To identify the contribution of individual sources of selection, we used previously quantified relationships between signal traits and each putative source to predict relationships between signal variation and fitness in Enchenopa binotata treehoppers (Hemiptera: Membracidae). We then measured phenotypic selection on signals and compared predicted and realized relationships between signal traits and mating success. We recorded male signals, then measured lifetime mating success at two population densities in a realistic environment in which sources of selection could interact. We identified which sources best predicted the relationship between signal variation and mating success using a multiple regression approach. All signal traits were under selection in at least one of the two breeding seasons measured, and in some cases selection was variable between years. Female preference was the strongest source of selection shaping male signals. The E. binotata species complex is a model of ecological speciation initiated by host shifts. Signal and preference divergence contribute to behavioral isolation within the complex, and the finding that female mate preferences drive signal evolution suggests that speciation in this group results from both ecological divergence and sexual selection.


Assuntos
Comportamento de Escolha , Comportamento Sexual Animal , Comunicação Animal , Animais , Evolução Biológica , Meio Ambiente , Feminino , Hemípteros , Masculino , Fenótipo , Seleção Genética , Caracteres Sexuais , Fatores Sexuais
12.
Biometrics ; 66(3): 914-24, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19764952

RESUMO

A major goal of evolutionary biology is to understand the dynamics of natural selection within populations. The strength and direction of selection can be described by regressing relative fitness measurements on organismal traits of ecological significance. However, many important evolutionary characteristics of organisms are complex, and have correspondingly complex relationships to fitness. Secondary sexual characteristics such as mating displays are prime examples of complex traits with important consequences for reproductive success. Typically, researchers atomize sexual traits such as mating signals into a set of measurements including pitch and duration, in order to include them in a statistical analysis. However, these researcher-defined measurements are unlikely to capture all of the relevant phenotypic variation, especially when the sources of selection are incompletely known. In order to accommodate this complexity we propose a Bayesian dimension-reduced spectrogram generalized linear model that directly incorporates representations of the entire phenotype (one-dimensional acoustic signal) into the model as a predictor while accounting for multiple sources of uncertainty. The first stage of dimension reduction is achieved by treating the spectrogram as an "image" and finding its corresponding empirical orthogonal functions. Subsequently, further dimension reduction is accomplished through model selection using stochastic search variable selection. Thus, the model we develop characterizes key aspects of the acoustic signal that influence sexual selection while alleviating the need to extract higher-level signal traits a priori. This facet of our approach is fundamental and has the potential to provide additional biological insight, as is illustrated in our analysis.


Assuntos
Comunicação Animal , Modelos Lineares , Modelos Biológicos , Fenótipo , Comportamento Sexual Animal , Animais , Evolução Biológica , Seleção Genética
13.
Evolution ; 62(1): 12-20, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18005157

RESUMO

Divergence between populations adapting to different environments may be facilitated when the populations differ in their sexual traits. We tested whether colonizing a novel environment may, through phenotypic plasticity, change sexual traits in a way that could alter the dynamics of sexual selection. This hypothesis has two components: changes in mean phenotypes across environments, and changes in the genetic background of the phenotypes that are produced -- or genotype x environment interaction (G x E). We simulated colonization of a novel environment and tested its effect on the mating signals of a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae), a clade that has diverged in a process involving host plant shifts and signal diversification. We found substantial genetic variation and G x E in most signal traits measured, with little or no change in mean signal phenotypes. We suggest that the expression of extant genetic variation across old and novel environments can initiate signal divergence.


Assuntos
Comunicação Animal , Evolução Biológica , Hemípteros/fisiologia , Rutaceae/parasitologia , Animais , Feminino , Hemípteros/genética , Interações Hospedeiro-Parasita , Masculino
14.
Proc Biol Sci ; 273(1601): 2585-93, 2006 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-17002943

RESUMO

Mate choice is considered an important influence in the evolution of mating signals and other sexual traits, and--since divergence in sexual traits causes reproductive isolation--it can be an agent of population divergence. The importance of mate choice in signal evolution can be evaluated by comparing male signal traits with female preference functions, taking into account the shape and strength of preferences. Specifically, when preferences are closed (favouring intermediate values), there should be a correlation between the preferred values and the trait means, and stronger preferences should be associated with greater preference-signal correspondence and lower signal variability. When preferences are open (favouring extreme values), signal traits are not only expected to be more variable, but should also be shifted towards the preferred values. We tested the role of female preferences in signal evolution in the Enchenopa binotata species complex of treehoppers, a clade of plant-feeding insects hypothesized to have speciated in sympatry. We found the expected relationship between signals and preferences, implicating mate choice as an agent of signal evolution. Because differences in sexual communication systems lead to reproductive isolation, the factors that promote divergence in female preferences--and, consequently, in male signals--may have an important role in the process of speciation.


Assuntos
Comunicação Animal , Evolução Biológica , Hemípteros/fisiologia , Comportamento Sexual Animal/fisiologia , Estimulação Acústica , Animais , Comportamento de Escolha/fisiologia , Feminino , Masculino , Missouri
15.
Artigo em Inglês | MEDLINE | ID: mdl-16896688

RESUMO

Conventional approaches to measuring animal vibrational signals on plant stems use a single transducer to measure the amplitude of vibrations. Such an approach, however, will often underestimate the amplitude of bending waves traveling along the stem. This occurs because vibration transducers are maximally sensitive along a single axis, which may not correspond to the major axis of stem motion. Furthermore, stem motion may be more complex than that of a bending wave propagating along a single axis, and such motion cannot be described using a single transducer. Here, we describe a method for characterizing stem motion in two dimensions by processing the signals from two orthogonally positioned transducers. Viewed relative to a cross-sectional plane, a point on the stem surface moves in an ellipse at any one frequency, with the ellipse's major axis corresponding to the maximum amplitude of vibration. The method outlined here measures the ellipse's major and minor axes, and its angle of rotation relative to one of the transducers. We illustrate this method with measurements of stem motion during insect vibrational communication. It is likely the two-dimensional nature of stem motion is relevant to insect vibration perception, making this method a promising avenue for studies of plant-borne transmission.


Assuntos
Comunicação Animal , Movimento (Física) , Caules de Planta , Transdução de Sinais/fisiologia , Vibração , Animais , Comportamento Animal , Insetos , Modelos Teóricos , Transdutores
16.
J Exp Biol ; 208(Pt 21): 4159-65, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16244174

RESUMO

In lesser waxmoths Achroia grisella, pair formation and female mate choice involve very fine discrimination of male ultrasonic signals. Female A. grisella prefer male signals with longer pulses and longer ;asynchrony intervals', and evaluate differences in these characteristics in the range of 80-260 mus. The first step in the evaluation of these characteristics is the tympanic transmission of stimuli. We used laser vibrometry to describe the mode of vibration, frequency tuning and stimulus transmission of the tympana of A. grisella. The tympanic response consisted of a rotational mode of vibration, in which the anterior and posterior sections moved out of phase; the posterior section of the tympanum vibrated with all points moving in phase and maximum displacement at the attachment point of the scoloparium that contains the receptor cells. The tympana of A. grisella were tuned to high ultrasonic frequencies and had an estimated time constant (i.e. the limit to their temporal acuity) of about 20-50 mus. Pulse length and all but the shortest asynchrony interval were thus well resolved by the tympanum. We discuss implications for the evaluation of pulse length and asynchrony interval.


Assuntos
Comunicação Animal , Mariposas/fisiologia , Comportamento Sexual Animal/fisiologia , Membrana Timpânica/fisiologia , Estimulação Acústica , Animais , Kansas , Lasers , Espectrografia do Som , Ultrassom , Vibração
17.
Proc Biol Sci ; 272(1567): 1023-9, 2005 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16024360

RESUMO

Insects are the dominant herbivores in tropical forests, with a range of mechanisms for exploiting plant resources. For group-living species, such mechanisms may involve communication. The Neotropical treehopper Calloconophora pinguis (Hemiptera: Membracidae) is a sap-feeding species in which groups of siblings feed on new leaves during the brief period of leaf expansion. Using an experimental approach, a process of cooperative foraging among siblings was documented, in which a few individuals in a group behave as scouts, locating a new feeding site and advertising it using plant-borne vibrational signals. Signalling leads to a period of positive feedback in which newly recruited individuals signal in concert with those already there. The food signalling system of C. pinguis is unique in its use of synchronized group displays and in the tight coordination of receiver responses with collective signals. Examples from a number of taxonomic groups show that vibrational communication can allow group-living insects to solve the challenges of feeding on plants, such as remaining in a foraging group or avoiding predation. While most research has focused on leaf-feeding species, sap-feeding species may remove just as much biomass. This study shows that cooperative vibrational communication underlies the ability of a sap-feeding species to exploit plant resources during a narrow window of availability.


Assuntos
Comunicação Animal , Comportamento Cooperativo , Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia , Hemípteros/fisiologia , Análise de Variância , Animais , Panamá , Folhas de Planta , Espectrografia do Som , Especificidade da Espécie , Vibração
18.
Evolution ; 58(3): 571-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15119440

RESUMO

Sexual communication can contribute to population divergence and speciation because of its effect on assortative mating. We examined the role of communication in assortative mating in the Enchenopa binotata species complex of treehoppers. These plant-feeding insects are a well studied case of sympatric speciation resulting from shifts to novel host-plant species. Shifting to hosts with different phenologies causes changes in life-history timing. In concert with high host fidelity, these changes reduce gene flow between populations on ancestral and novel hosts and facilitate a rapid response to divergent natural selection. However, some interbreeding can still occur because of partial overlap of mating periods. Additional behavioral mechanisms resulting in reproductive isolation may thus be important for divergence. In E. binotata, mating pairs form after an exchange of plant-borne vibrational signals. We used playback experiments to examine the relevance of inter- and intraspecific variation in male advertisement signals for female mate choice in a member of the E. binotata species complex. Female signals given in response to male signals provided a simple and reliable assay. Male species and male individual identity were important determinants of female responses. Females failed to respond to the signals of the two most closely related species in the complex, but they responded strongly to the signals of conspecific males, as well as to those of the most basal species in the complex. Communication systems in the E. binotata species complex can therefore play a role in reproductive isolation. Female responses were influenced by among-individual variation in male signals and females, suggesting the involvement of sexual selection in the evolution of these communication systems.


Assuntos
Comunicação Animal , Evolução Biológica , Hemípteros/fisiologia , Seleção Genética , Comportamento Sexual Animal/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Feminino , Masculino , Filogenia , Dinâmica Populacional , Reprodução/fisiologia , Especificidade da Espécie , Virginia
19.
Evolution ; 50(2): 504-511, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28568917

RESUMO

The problem of error in the phylogenetic reconstruction of ancestral character states is explored by developing the model of Frumhoff and Reeve (1994). Information about the evolutionary rate of change within a character is inferred from the distribution of its character states on a known phylogeny, and this information is used to impose confidence limits on the error associated with ancestral state inference. Ancestral state inference is found to be remarkably robust under the model assumptions for a wide range of parameter values; however, the probability of error increases when the number of species within a clade is small and/or state-transition probabilities are strongly skewed in favor of the non-ancestral state. The rationale for expecting such a skew, a hypothesis of parallelism, is shown to rely on assumptions of low rates of change in at least two phylogenetically inherited characters: the tendency to occupy a particular ecological niche and the tendency to respond in a particular way to selection. A means for judging the relative likelihoods of parallelism vs. straightforward homology as explanations for a given character-state distribution is suggested. General problems with the model are discussed, as are methods for making it more realistic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA