Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17479-17480, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858930

RESUMO

This erratum corrects errors that appear in Opt. Express31, 5042 (2023).10.1364/OE.480301.

2.
Opt Express ; 32(11): 19837-19853, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859109

RESUMO

Systematic errors are observed in dual comb spectroscopy when pulses from the two sources travel in a common fiber before interrogating the sample of interest. When sounding a molecular gas, these errors distort both the line shapes and retrieved concentrations. Simulations of dual comb interferograms based on a generalized nonlinear Schrodinger equation highlight two processes for these systematic errors. Self-phase modulation changes the spectral content of the field interrogating the molecular response but affects the recorded spectral baseline and absorption features differently, leading to line intensity errors. Cross-phase modulation modifies the relative inter-pulse delay, thus introducing interferogram sampling errors and creating a characteristic asymmetric distortion on spectral lines. Simulations capture the shape and amplitude of experimental errors which are around 0.1% on spectral transmittance residuals for 10 mW of total average power in 10 meters of common fiber, scaling up to above 0.6% for 20 mW and 60 m.

3.
Atmos Meas Tech ; 16(17)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37961051

RESUMO

We present an open-path mid-infrared dual-comb spectroscopy (DCS) system capable of precise measurement of the stable water isotopologues H216O and HD16O. This system ran in a remote configuration at a rural test site for 3.75 months with 60% uptime and achieved a precision of < 2‰ on the normalized ratio of H216O and HD16O (δD) in 1000s. Here, we compare the δD values from the DCS system to those from the National Ecological Observatory Network (NEON) isotopologue point sensor network. Over the multi-month campaign, the mean difference between the DCS δD values and the NEON δD values from a similar ecosystem is < 2‰ with a standard deviation of 18‰, which demonstrates the inherent accuracy of DCS measurements over a variety of atmospheric conditions. We observe time-varying diurnal profiles and seasonal trends that are mostly correlated between the sites on daily timescales. This observation motivates the development of denser ecological monitoring networks aimed at understanding regional- and synoptic-scale water transport. Precise and accurate open-path measurements using DCS provide new capabilities for such networks.

4.
Opt Express ; 31(18): 29074-29084, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710714

RESUMO

Operation of any dual-comb spectrometer requires digitization of the interference signal before further processing. Nonlinearities in the analog-to-digital conversion can alter the apparent gas concentration by multiple percent, limiting both precision and accuracy of this technique. This work describes both the measurement of digitizer nonlinearity and the development of a model that quantitatively describes observed concentration bias over a range of conditions. We present hardware methods to suppress digitizer-induced bias of concentration retrievals below 0.1%.

5.
Front Chem ; 11: 1202255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332891

RESUMO

We present results from a field study monitoring methane and volatile organic compound emissions near an unconventional oil well development in Northern Colorado from September 2019 to May 2020 using a mid-infrared dual-comb spectrometer. This instrument allowed quantification of methane, ethane, and propane in a single measurement with high time resolution and integrated path sampling. Using ethane and propane as tracer gases for methane from oil and gas activity, we observed emissions during the drilling, hydraulic fracturing, millout, and flowback phases of well development. Large emissions were seen in drilling and millout phases and emissions decreased to background levels during the flowback phase. Ethane/methane and propane/methane ratios varied widely throughout the observations.

6.
Opt Express ; 31(3): 5042-5055, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785456

RESUMO

Dual-comb spectroscopy measures greenhouse gas concentrations over kilometers of open air with high precision. However, the accuracy of these outdoor spectra is challenging to disentangle from the absorption model and the fluctuating, heterogenous concentrations over these paths. Relative to greenhouse gases, O2 concentrations are well-known and evenly mixed throughout the atmosphere. Assuming a constant O2 background, we can use O2 concentration measurements to evaluate the consistency of open-path dual-comb spectroscopy with laboratory-derived absorption models. To this end, we construct a dual-comb spectrometer spanning 1240 nm to 1700nm, which measures O2 absorption features in addition to CO2 and CH4. O2 concentration measurements across a 560 m round-trip outdoor path reach 0.1% precision in 10 minutes. Over seven days of shifting meteorology and spectrometer conditions, the measured O2 has -0.07% mean bias, and 90% of the measurements are within 0.4% of the expected hemisphere-average concentration. The excursions of up to 0.4% seem to track outdoor temperature and humidity, suggesting that accuracy may be limited by the O2 absorption model or by water interference. This simultaneous O2, CO2, and CH4 spectrometer will be useful for measuring accurate CO2 mole fractions over vertical or many-kilometer open-air paths, where the air density varies.

7.
Opt Express ; 30(14): 24326-24351, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236990

RESUMO

The atmospheric concentration of methane has more than doubled since the start of the Industrial Revolution. Methane is the second-most-abundant greenhouse gas created by human activities and a major driver of climate change. This APS-Optica report provides a technical assessment of the current state of monitoring U.S. methane emissions from oil and gas operations, which accounts for roughly 30% of U.S. anthropogenic methane emissions. The report identifies current technological and policy gaps and makes recommendations for the federal government in three key areas: methane emissions detection, reliable and systematized data and models to support mitigation measures, and effective regulation.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Humanos , Metano/análise
8.
Opt Express ; 30(21): 38684-38694, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258427

RESUMO

Opto-optical loss modulation (OOM) for stabilization of the carrier-envelope offset (CEO) frequency of a femtosecond all-fiber laser is performed using a collinear geometry. Amplitude-modulated 1064 nm light is fiber coupled into an end-pumped semiconductor saturable absorber mirror (SESAM)-mode-locked all-polarization-maintaining erbium fiber femtosecond laser, where it optically modulates the loss of the SESAM resulting in modulation of the CEO frequency. A noise rejection bandwidth of 150 kHz is achieved when OOM and optical gain modulation are combined in a hybrid analog/digital loop. Collinear OOM provides a simple, all-fiber, high-bandwidth method for improving the CEO frequency stability of SESAM mode-locked fiber lasers.

9.
Sci Adv ; 7(14)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33789900

RESUMO

Advances in spectroscopy have the potential to improve our understanding of agricultural processes and associated trace gas emissions. We implement field-deployed, open-path dual-comb spectroscopy (DCS) for precise multispecies emissions estimation from livestock. With broad atmospheric dual-comb spectra, we interrogate upwind and downwind paths from pens containing approximately 300 head of cattle, providing time-resolved concentration enhancements and fluxes of CH4, NH3, CO2, and H2O. The methane fluxes determined from DCS data and fluxes obtained with a colocated closed-path cavity ring-down spectroscopy gas analyzer agree to within 6%. The NH3 concentration retrievals have sensitivity of 10 parts per billion and yield corresponding NH3 fluxes with a statistical precision of 8% and low systematic uncertainty. Open-path DCS offers accurate multispecies agricultural gas flux quantification without external calibration and is easily extended to larger agricultural systems where point-sampling-based approaches are insufficient, presenting opportunities for field-scale biogeochemical studies and ecological monitoring.

10.
Opt Express ; 28(14): 20345-20361, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680096

RESUMO

A major design goal for femtosecond fiber lasers is to increase the output power but not at the cost of increasing the noise level or narrowing the bandwidth. Here, we perform a computational study to optimize the cavity design of a femtosecond fiber laser that is passively modelocked with a semiconductor saturable absorbing mirror (SESAM). We use dynamical methods that are more than a thousand times faster than standard evolutionary methods. We show that we can obtain higher pulse energies and hence higher output powers by simultaneously increasing the output coupling ratio, the gain, and the anomalous group delay dispersion. We can obtain output pulses that are from 5 to 15 times the energy of the pulse in the current experimental design with no penalty in the noise level or bandwidth.

11.
Nat Commun ; 11(1): 3152, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561738

RESUMO

Spectrally resolved photoacoustic imaging is promising for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds and causes errors if the sample changes in time between images acquired at different wavelengths. We demonstrate a solution to this problem by using dual-comb spectroscopy for photoacoustic measurements. This approach enables a photoacoustic measurement at thousands of wavelengths simultaneously. In this technique, two optical-frequency combs are interfered on a sample and the resulting pressure wave is measured with an ultrasound transducer. This acoustic signal is processed in the frequency-domain to obtain an optical absorption spectrum. For a proof-of-concept demonstration, we measure photoacoustic signals from polymer films. The absorption spectra obtained from these measurements agree with those measured using a spectrophotometer. Improving the signal-to-noise ratio of the dual-comb photoacoustic spectrometer could enable high-speed spectrally resolved photoacoustic imaging.

12.
Opt Express ; 28(10): 14740-14752, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403509

RESUMO

This manuscript describes the design of a robust, mid-infrared dual-comb spectrometer operating in the 3.1-µm to 4-µm spectral window for future field applications. The design represents an improvement in system size, power consumption, and robustness relative to previous work while also providing a high spectral signal-to-noise ratio. We demonstrate a system quality factor of 2×106 and 30 hours of continuous operation over a 120-meter outdoor air path.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31555337

RESUMO

We performed 7.5 weeks of path-integrated concentration measurements of CO2, CH4, H2O, and HDO over the city of Boulder, Colorado. An open-path dual-comb spectrometer simultaneously measured time-resolved data across a reference path, located near the mountains to the west of the city, and across an over-city path that intersected two-thirds of the city, including two major commuter arteries. By comparing the measured concentrations over the two paths when the wind is primarily out of the west, we observe daytime CO2 enhancements over the city. Given the warm weather and the measurement footprint, the dominant contribution to the CO2 enhancement is from city vehicle traffic. We use a Gaussian plume model combined with reported city traffic patterns to estimate city emissions of on-road CO2 as (6.2 ± 2.2) × 105 metric tons (t) CO2 yr-1 after correcting for non-traffic sources. Within the uncertainty, this value agrees with the city's bottom-up greenhouse gas inventory for the on-road vehicle sector of 4.5 × 105 t CO2 yr-1. Finally, we discuss experimental modifications that could lead to improved estimates from our path-integrated measurements.

14.
Opt Express ; 27(8): 11869-11876, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053026

RESUMO

Si3N4 waveguides, pumped at 1550 nm, can provide spectrally smooth, broadband light for gas spectroscopy in the important 2 µm to 2.5 µm atmospheric water window, which is only partially accessible with silica-fiber based systems. By combining Er+ fiber frequency combs and supercontinuum generation in tailored Si3N4 waveguides, high signal-to-noise dual-comb spectroscopy spanning 2 µm to 2.5 µm is demonstrated. Acquired broadband dual-comb spectra of CO and CO2 agree well with database line shape models and have a spectral-signal-to-noise as high as 48/√s, showing that the high coherence between the two combs is retained in the Si3N4 supercontinuum generation. The dual-comb spectroscopy figure of merit is 6 × 106/√s, equivalent to that of all-fiber dual-comb spectroscopy systems in the 1.6 µm band. based on these results, future dual-comb spectroscopy can combine fiber comb technology with Si3N4 waveguides to access new spectral windows in a robust non-laboratory platform.

15.
Environ Sci Technol ; 53(5): 2908-2917, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30695644

RESUMO

A new method is tested in a single-blind study for detection, attribution, and quantification of methane emissions from the natural gas supply chain, which contribute substantially to annual U.S. emissions. The monitoring approach couples atmospheric methane concentration measurements from an open-path dual frequency comb laser spectrometer with meteorological data in an inversion to characterize emissions. During single-blind testing, the spectrometer is placed >1 km from decommissioned natural gas equipment configured with intentional leaks of controllable rate. Single, steady emissions ranging from 0 to 10.7 g min-1 (0-34.7 scfh) are detected, located, and quantified at three gas pads of varying size and complexity. The system detects 100% of leaks, including leaks as small as 0.96 g min-1 (3.1 scfh). It attributes leaks to the correct pad or equipment group (tank battery, separator battery, wellhead battery) 100% of the time and to the correct equipment (specific separator, tank, or wellhead) 67% of the time. All leaks are quantified to within 3.7 g min-1 (12 scfh); 94% are quantified to within 2.8 g min-1 (9 scfh). These tests are an important initial demonstration of the methodology's viability for continuous monitoring of large regions, with extension to other trace gases and industries.


Assuntos
Poluentes Atmosféricos , Gás Natural , Gases , Metano , Método Simples-Cego
16.
J Quant Spectrosc Radiat Transf ; 217: 189-212, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32913374

RESUMO

We report argon-broadened water vapor transition parameters and their temperature dependence based on measured spectra spanning 6801-7188 cm-1 from a broad-bandwidth, high-resolution dual frequency comb spectrometer. The 25 collected spectra of 2% water vapor in argon ranged from 296 K to 1305 K with total pressure spanning 100 Torr to 600 Torr. A multispectrum fitting routine was used in conjunction with a quadratic speed-dependent Voigt profile to extract broadening and shift parameters, and a power-law temperature-dependence exponent for both. The measurements represent the first broad bandwidth, argon-broadened water vapor absorption study, and are an important step toward a foreign-gas-perturbed, high-temperature database developed using advanced lineshape profiles.

17.
J Quant Spectrosc Radiat Transf ; 210: 240-250, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-32934421

RESUMO

We measure speed-dependent Voigt lineshape parameters with temperature-dependence exponents for several hundred spectroscopic features of pure water spanning 6801-7188 cm-1. The parameters are extracted from broad bandwidth, high-resolution dual frequency comb absorption spectra with multispectrum fitting techniques. The data encompass 25 spectra ranging from 296 K to 1305 K and 1 to 17 Torr of pure water vapor. We present the extracted parameters, compare them to published data, and present speed-dependence, self-shift, and self-broadening temperature-dependent parameters for the first time. Lineshape data is extracted using a quadratic speed-dependent Voigt profile and a single self-broadening power law temperature-dependence exponent over the entire temperature range. The results represent an important step toward a new high-temperature database using advanced lineshape profiles.

18.
Atmos Meas Tech ; 10(9): 3295-3311, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276547

RESUMO

We present the first quantitative intercomparison between two open-path dual comb spectroscopy (DCS) instruments which were operated across adjacent 2-km open-air paths over a two-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6021 to 6388 cm-1 (1565 to 1661 nm), corresponding to a 367 cm-1 bandwidth, at 0.0067 cm-1 sample spacing. The measured absorption spectra agree with each other to within 5×10-4 without any external calibration of either instrument. The absorption spectra are fit to retrieve concentrations for carbon dioxide (CO2), methane (CH4), water (H2O), and deuterated water (HDO). The retrieved dry mole fractions agree to 0.14% (0.57 ppm) for CO2, 0.35% (7 ppb) for CH4, and 0.40% (36 ppm) for H2O over the two-week measurement campaign, which included 23 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a WMO-calibrated cavity ringdown point sensor located along the path with good agreement. Short-term and long-term differences between the two systems are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the two-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4.

19.
Opt Lett ; 42(12): 2362-2365, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614311

RESUMO

Passively mode-locked lasers with semiconductor saturable absorption mirrors are attractive comb sources due to their simplicity, excellent self-starting properties, and their environmental robustness. These lasers, however, can have an increased noise level and wake mode instabilities. Here, we investigate the wake mode dynamics in detail using a combination of evolutionary and dynamical methods. We describe the mode-locked pulse generation from noise when a stable pulse exists and the evolution of the wake mode instability when no stable pulse exists. We then calculate the dynamical spectrum of the mode-locked pulse, and we show that it has six discrete eigenmodes, two of which correspond to wake modes. The wake modes are unstable when the wake mode eigenvalues have a positive real part. We also show that even when the laser is stable, the wake modes lead to experimentally observed sidebands.

20.
Opt Lett ; 42(12): 2314-2317, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614340

RESUMO

We utilize silicon-nitride waveguides to self-reference a telecom-wavelength fiber frequency comb through supercontinuum generation, using 11.3 mW of optical power incident on the chip. This is approximately 10 times lower than conventional approaches using nonlinear fibers and is enabled by low-loss (<2 dB) input coupling and the high nonlinearity of silicon nitride, which can provide two octaves of spectral broadening with incident energies of only 110 pJ. Following supercontinuum generation, self-referencing is accomplished by mixing 780-nm dispersive-wave light with the frequency-doubled output of the fiber laser. In addition, at higher optical powers, we demonstrate f-to-3f self-referencing directly from the waveguide output by the interference of simultaneous supercontinuum and third harmonic generation, without the use of an external doubling crystal or interferometer. These hybrid comb systems combine the performance of fiber-laser frequency combs with the high nonlinearity and compactness of photonic waveguides, and should lead to low-cost, fully stabilized frequency combs for portable and space-borne applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA