Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 9(7): e014366, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32248761

RESUMO

Background Nuclear-to-mitochondrial communication regulating gene expression and mitochondrial function is a critical process following cardiac ischemic injury. In this study, we determined that cyclin C, a component of the Mediator complex, regulates cardiac and mitochondrial function in part by modifying mitochondrial fission. We tested the hypothesis that cyclin C functions as a transcriptional cofactor in the nucleus and a signaling molecule stimulating mitochondrial fission in response to stimuli such as cardiac ischemia. Methods and Results We utilized gain- and loss-of-function mouse models in which the CCNC (cyclin C) gene was constitutively expressed (transgenic, CycC cTg) or deleted (knockout, CycC cKO) in cardiomyocytes. The knockout and transgenic mice exhibited decreased cardiac function and altered mitochondria morphology. The hearts of knockout mice had enlarged mitochondria with increased length and area, whereas mitochondria from the hearts of transgenic mice were significantly smaller, demonstrating a role for cyclin C in regulating mitochondrial dynamics in vivo. Hearts from knockout mice displayed altered gene transcription and metabolic function, suggesting that cyclin C is essential for maintaining normal cardiac function. In vitro and in vivo studies revealed that cyclin C translocates to the cytoplasm, enhancing mitochondria fission following stress. We demonstrated that cyclin C interacts with Cdk1 (cyclin-dependent kinase 1) in vivo following ischemia/reperfusion injury and that, consequently, pretreatment with a Cdk1 inhibitor results in reduced mitochondrial fission. This finding suggests a potential therapeutic target to regulate mitochondrial dynamics in response to stress. Conclusions Our study revealed that cyclin C acts as a nuclear-to-mitochondrial signaling factor that regulates both cardiac hypertrophic gene expression and mitochondrial fission. This finding provides new insights into the regulation of cardiac energy metabolism following acute ischemic injury.


Assuntos
Ciclina C/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/metabolismo , Células Cultivadas , Ciclina C/deficiência , Ciclina C/genética , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA