Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Oncogene ; 42(7): 491-500, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36357571

RESUMO

Pancreatic stellate cells (PSCs) are key to the treatment-refractory desmoplastic phenotype of pancreatic ductal adenocarcinoma (PDAC) and have received considerable attention as a stromal target for cancer therapy. This approach demands detailed understanding of their pro- and anti-tumourigenic effects. Interrogating PSC-cancer cell interactions in 3D models, we identified nuclear FGFR1 as critical for PSC-led invasion of cancer cells. ChIP-seq analysis of FGFR1 in PSCs revealed a number of FGFR1 interaction sites within the genome, notably NRG1, which encodes the ERBB ligand Neuregulin. We show that nuclear FGFR1 regulates transcription of NRG1, which in turn acts in autocrine fashion through an ERBB2/4 heterodimer to promote invasion. In support of this, recombinant NRG1 in 3D model systems rescued the loss of invasion incurred by FGFR inhibition. In vivo we demonstrate that, while FGFR inhibition does not affect the growth of pancreatic tumours in mice, local invasion into the pancreas is reduced. Thus, FGFR and NRG1 may present new stromal targets for PDAC therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Regulação para Cima , Neuregulina-1/genética , Neuregulina-1/farmacologia , Células Estreladas do Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética
3.
Cells ; 10(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918004

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with a 5 year survival rate of less than 8%, and is predicted to become the second leading cause of cancer-related death by 2030. Alongside late detection, which impacts upon surgical treatment, PDAC tumours are challenging to treat due to their desmoplastic stroma and hypovascular nature, which limits the effectiveness of chemotherapy and radiotherapy. Pancreatic stellate cells (PSCs), which form a key part of this stroma, become activated in response to tumour development, entering into cross-talk with cancer cells to induce tumour cell proliferation and invasion, leading to metastatic spread. We and others have shown that Fibroblast Growth Factor Receptor (FGFR) signalling can play a critical role in the interactions between PDAC cells and the tumour microenvironment, but it is clear that the FGFR signalling pathway is not acting in isolation. Here we describe our current understanding of the mechanisms by which FGFR signalling contributes to PDAC progression, focusing on its interaction with other pathways in signalling networks and discussing the therapeutic approaches that are being developed to try and improve prognosis for this terrible disease.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
4.
Curr Protoc Essent Lab Tech ; 21(1): e46, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33381282

RESUMO

Stored biological materials should have minimal pre-analytical variations in order to provide researchers with high-quality samples that will give reliable and reproducible results, yet methods of storage should be easy to implement, with minimal cost and health hazard. Frozen tissue samples are a valuable biological resource. Here we compare different methods, such as liquid nitrogen (LN) or dry ice (DI), to a cheap and safe alternative using an aluminum platform (AP). Murine fresh liver and pancreas tissues were used with varying lengths of warm ischemia time. Quality assessment was based on histological evaluation, DNA and RNA extraction and quantification, and RNA degradation analysis, as well preservation of antigens for immunofluorescence, in a blinded manner. Both in superficial and deep tissue sections, based on histological assessment, AP is superior to DI, or as good as LN techniques in terms of presence of ice crystals, cutting artifacts, and overall quality/structural preservation. DNA and RNA were successfully extracted in reasonable quantities from all freezing techniques, but RNA degradation was seen for pancreas samples across all techniques. Immunofluorescence with cytokeratin8 (CK-8), alpha smooth muscle actin (αSMA), CD3, and B220 shows equally good outcomes for AP and LN, which are better than DI. The aluminum platform is a cheap, yet reliable method to freeze samples, rapidly preserving histological, antigenic, and DNA/RNA quality. Wider testing is required across different sample types. © 2020 The Authors. Basic Protocol: Flash-freezing fresh tissue with aluminum platform Alternate Protocol 1: Freezing fresh tissue with liquid nitrogen Alternate Protocol 2: Freezing fresh tissue with dry ice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA