Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(6-1): 064128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020906

RESUMO

We analytically derive universal bounds that describe the tradeoff between thermodynamic cost and precision in a sequence of events related to some internal changes of an otherwise hidden physical system. The precision is quantified by the fluctuations in either the number of events counted over time or the waiting times between successive events. Our results are valid for the same broad class of nonequilibrium driven systems considered by the thermodynamic uncertainty relation, but they extend to both time-symmetric and asymmetric observables. We show how optimal precision saturating the bounds can be achieved. For waiting-time fluctuations of asymmetric observables, a phase transition in the optimal configuration arises, where higher precision can be achieved by combining several signals.

2.
Phys Rev E ; 109(2-1): 024138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491573

RESUMO

In this work, we introduce a generalization of the Landauer bound for erasure processes that stems from absolutely irreversible dynamics. Assuming that the erasure process is carried out in an absolutely irreversible way so that the probability of observing some trajectories is zero in the forward process but finite in the reverse process, we derive a generalized form of the bound for the average erasure work, which is valid also for imperfect erasure and asymmetric bits. The generalized bound obtained is tighter than or, at worst, as tight as existing ones. Our theoretical predictions are supported by numerical experiments and the comparison with data from previous works.

3.
Phys Rev E ; 107(3-1): 034137, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37073072

RESUMO

We study the performance of a stochastic algorithm based on the power method that adaptively learns the large deviation functions characterizing the fluctuations of additive functionals of Markov processes, used in physics to model nonequilibrium systems. This algorithm was introduced in the context of risk-sensitive control of Markov chains and was recently adapted to diffusions evolving continuously in time. Here we provide an in-depth study of the convergence of this algorithm close to dynamical phase transitions, exploring the speed of convergence as a function of the learning rate and the effect of including transfer learning. We use as a test example the mean degree of a random walk on an Erdos-Rényi random graph, which shows a transition between high-degree trajectories of the random walk evolving in the bulk of the graph and low-degree trajectories evolving in dangling edges of the graph. The results show that the adaptive power method is efficient close to dynamical phase transitions, while having many advantages in terms of performance and complexity compared to other algorithms used to compute large deviation functions.

4.
Phys Rev E ; 107(2-1): 024126, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932599

RESUMO

We consider random walks evolving on two models of connected and undirected graphs and study the exact large deviations of a local dynamical observable. We prove, in the thermodynamic limit, that this observable undergoes a first-order dynamical phase transition (DPT). This is interpreted as a "coexistence" of paths in the fluctuations that visit the highly connected bulk of the graph (delocalization) and paths that visit the boundary (localization). The methods we used also allow us to characterize analytically the scaling function that describes the finite-size crossover between the localized and delocalized regimes. Remarkably, we also show that the DPT is robust with respect to a change in the graph topology, which only plays a role in the crossover regime. All results support the view that a first-order DPT may also appear in random walks on infinite-size random graphs.

5.
Phys Rev E ; 103(6-1): 062142, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271648

RESUMO

It is known that the distribution of nonreversible Markov processes breaking the detailed balance condition converges faster to the stationary distribution compared to reversible processes having the same stationary distribution. This is used in practice to accelerate Markov chain Monte Carlo algorithms that sample the Gibbs distribution by adding nonreversible transitions or nongradient drift terms. The breaking of detailed balance also accelerates the convergence of empirical estimators to their ergodic expectation in the long-time limit. Here, we give a physical interpretation of this second form of acceleration in terms of currents associated with the fluctuations of empirical estimators using the level 2.5 of large deviations, which characterizes the likelihood of density and current fluctuations in Markov processes. Focusing on diffusion processes, we show that there is accelerated convergence because estimator fluctuations arise in general with current fluctuations, leading to an added large deviation cost compared to the reversible case, which shows no current. We study the current fluctuation most likely to arise in conjunction with a given estimator fluctuation and provide bounds on the acceleration, based on approximations of this current. We illustrate these results for the Ornstein-Uhlenbeck process in two dimensions and the Brownian motion on the circle.

6.
Phys Rev E ; 99(2-1): 022137, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934304

RESUMO

We study the rare fluctuations or large deviations of time-integrated functionals or observables of an unbiased random walk evolving on Erdös-Rényi random graphs, and construct a modified, biased random walk that explains how these fluctuations arise in the long-time limit. Two observables are considered: the sum of the degrees visited by the random walk and the sum of their logarithm, related to the trajectory entropy. The modified random walk is used for both quantities to explain how sudden changes in degree fluctuations, similar to dynamical phase transitions, are related to localization transitions. For the second quantity, we also establish links between the large deviations of the trajectory entropy and the maximum entropy random walk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA