Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2047, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440538

RESUMO

The genus Quercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.


Assuntos
Quercus , Evolução Biológica , Metilação de DNA/genética , Epigenoma , Evolução Molecular , Humanos , Quercus/genética
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33536344

RESUMO

An important question is what genes govern the differentiation of plant embryos into suspensor and embryo proper regions following fertilization and division of the zygote. We compared embryo proper and suspensor transcriptomes of four plants that vary in embryo morphology within the suspensor region. We determined that genes encoding enzymes in several metabolic pathways leading to the formation of hormones, such as gibberellic acid, and other metabolites are up-regulated in giant scarlet runner bean and common bean suspensors. Genes involved in transport and Golgi body organization are up-regulated within the suspensors of these plants as well, strengthening the view that giant specialized suspensors serve as a hormone factory and a conduit for transferring substances to the developing embryo proper. By contrast, genes controlling transcriptional regulation, development, and cell division are up-regulated primarily within the embryo proper. Transcriptomes from less specialized soybean and Arabidopsis suspensors demonstrated that fewer genes encoding metabolic enzymes and hormones are up-regulated. Genes active in the embryo proper, however, are functionally similar to those active in scarlet runner bean and common bean embryo proper regions. We uncovered a set of suspensor- and embryo proper-specific transcription factors (TFs) that are shared by all embryos irrespective of morphology, suggesting that they are involved in early differentiation processes common to all plants. Chromatin immunoprecipitation sequencing (ChIP-Seq) experiments with scarlet runner bean and soybean WOX9, an up-regulated suspensor TF, gained entry into a regulatory network important for suspensor development irrespective of morphology.


Assuntos
Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Divisão Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/metabolismo , Sementes/metabolismo , Glycine max/genética , Glycine max/crescimento & desenvolvimento
3.
G3 (Bethesda) ; 9(10): 3439-3452, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31431477

RESUMO

Epithelial cells are the building blocks of many organs, including skin. The vertebrate skin initially consists of two epithelial layers, the outer periderm and inner basal cell layers, which have distinct properties, functions, and fates. The embryonic periderm ultimately disappears during development, whereas basal cells proliferate to form the mature, stratified epidermis. Although much is known about mechanisms of homeostasis in mature skin, relatively little is known about the two cell types in pre-stratification skin. To define the similarities and distinctions between periderm and basal skin epithelial cells, we purified them from zebrafish at early development stages and deeply profiled their gene expression. These analyses identified groups of genes whose tissue enrichment changed at each stage, defining gene flow dynamics of maturing vertebrate epithelia. At each of 52 and 72 hr post-fertilization (hpf), more than 60% of genes enriched in skin cells were similarly expressed in both layers, indicating that they were common epithelial genes, but many others were enriched in one layer or the other. Both expected and novel genes were enriched in periderm and basal cell layers. Genes encoding extracellular matrix, junctional, cytoskeletal, and signaling proteins were prominent among those distinguishing the two epithelial cell types. In situ hybridization and BAC transgenes confirmed our expression data and provided new tools to study zebrafish skin. Collectively, these data provide a resource for studying common and distinguishing features of maturing epithelia.


Assuntos
Desenvolvimento Embrionário/genética , Epitélio/embriologia , Organogênese/genética , Transcriptoma , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo
4.
Proc Natl Acad Sci U S A ; 114(21): E4296-E4305, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484037

RESUMO

Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.


Assuntos
Clorófitas/genética , Clorófitas/metabolismo , Genoma de Planta/genética , Microalgas/genética , Sequência de Bases , Biocombustíveis , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Análise de Sequência de DNA , Transcriptoma/genética , Xantofilas/biossíntese , Xantofilas/genética
5.
Proc Natl Acad Sci U S A ; 114(2): 406-411, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028228

RESUMO

Previously, we have shown that loss of the histone 3 lysine 27 (H3K27) monomethyltransferases ARABIDOPSIS TRITHORAX-RELATED 5 (ATXR5) and ATXR6 (ATXR6) results in the overreplication of heterochromatin. Here we show that the overreplication results in DNA damage and extensive chromocenter remodeling into unique structures we have named "overreplication-associated centers" (RACs). RACs have a highly ordered structure with an outer layer of condensed heterochromatin, an inner layer enriched in the histone variant H2AX, and a low-density core containing foci of phosphorylated H2AX (a marker of double-strand breaks) and the DNA-repair enzyme RAD51. atxr5,6 mutants are strongly affected by mutations in DNA repair, such as ATM and ATR. Because of its dense packaging and repetitive DNA sequence, heterochromatin is a challenging environment in which to repair DNA damage. Previous work in animals has shown that heterochromatic breaks are translocated out of the heterochromatic domain for repair. Our results show that atxr5,6 mutants use a variation on this strategy for repairing heterochromatic DNA damage. Rather than being moved to adjacent euchromatic regions, as in animals, heterochromatin undergoes large-scale remodeling to create a compartment with low chromatin density.


Assuntos
Dano ao DNA/genética , Heterocromatina/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Histonas/genética , Metiltransferases/genética , Mutação/genética , Fosforilação/genética
6.
Biotechnol Biofuels ; 9: 258, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933100

RESUMO

BACKGROUND: Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom Cyclotella cryptica, which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids. RESULTS: We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in C. cryptica that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches. CONCLUSIONS: Functional annotation and detailed cross-species comparison of key carbon rich processes in C. cryptica highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.

7.
Nat Commun ; 7: 11640, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27291711

RESUMO

DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilação de DNA/genética , Meteniltetra-Hidrofolato Cicloidrolase/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Proteínas de Arabidopsis/genética , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Desmetilação do DNA , Epigênese Genética , Ácido Fólico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Homeostase/efeitos dos fármacos , Lisina/metabolismo , Meteniltetra-Hidrofolato Cicloidrolase/genética , Metionina/farmacologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Modelos Biológicos , Mutação/genética , Transporte Proteico/efeitos dos fármacos , S-Adenosilmetionina/metabolismo , Tetra-Hidrofolatos/farmacologia
8.
Plant J ; 86(6): 481-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27061965

RESUMO

MicroRNAs (miRNAs) are important regulatory molecules in eukaryotic organisms. Existing methods for the identification of mature miRNA sequences in plants rely extensively on the search for stem-loop structures, leading to high false negative rates. Here, we describe a probabilistic method for ranking putative plant miRNAs using a naïve Bayes classifier and its publicly available implementation. We use a number of properties to construct the classifier, including sequence length, number of observations, existence of detectable predicted miRNA* sequences, the distribution of nearby reads and mapping multiplicity. We apply the method to small RNA sequence data from soybean, peach, Arabidopsis and rice and provide experimental validation of several predictions in soybean. The approach performs well overall and strongly enriches for known miRNAs over other types of sequences. By utilizing a Bayesian approach to rank putative miRNAs, our method is able to score miRNAs that would be eliminated by other methods, such as those that have low counts or lack detectable miRNA* sequences. As a result, we are able to detect several soybean miRNA candidates, including some that are 24 nucleotides long, a class that is almost universally eliminated by other methods.


Assuntos
Teorema de Bayes , Biologia Computacional/métodos , MicroRNAs/genética , RNA de Plantas/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/classificação , RNA de Plantas/classificação
9.
BMC Genomics ; 16: 552, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215102

RESUMO

BACKGROUND: Reference transcriptomes provide valuable resources for understanding evolution within and among species. We de novo assembled and annotated a reference transcriptome for Quercus lobata and Q. garryana and identified single-nucleotide polymorphisms (SNPs) to provide resources for forest genomicists studying this ecologically and economically important genus. We further performed preliminary analyses of genes important in interspecific divergent (positive) selection that might explain ecological differences among species, estimating rates of nonsynonymous to synonymous substitutions (d N/d S) and Fay and Wu's H. Functional classes of genes were tested for unusually high d N/d S or low H consistent with divergent positive selection. RESULTS: Our draft transcriptome is among the most complete for oaks, including 83,644 contigs (23,329 ≥ 1 kbp), 14,898 complete and 13,778 partial gene models, and functional annotations for 9,431 Arabidopsis orthologs and 19,365 contigs with Pfam hits. We identified 1.7 million possible sequence variants including 1.1 million high-quality diallelic SNPs - among the largest sets identified in any tree. 11 of 18 functional categories with significantly elevated d N/d S are involved in disease response, including 50+ genes with d N/d S > 1. Other high-d N/d S genes are involved in biotic response, flowering and growth, or regulatory processes. In contrast, median d N/d S was low (0.22), suggesting that purifying selection influences most genes. No functional categories have unusually low H. CONCLUSIONS: These results offer preliminary support for the hypothesis that divergent selection at pathogen resistance are important factors in species divergence in these hybridizing California oaks. Our transcriptome provides a solid foundation for future studies of gene expression, natural selection, and speciation in Quercus.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Polimorfismo de Nucleotídeo Único , Quercus/genética , Transcriptoma , California , Evolução Molecular , Genes de Plantas , Anotação de Sequência Molecular , Especificidade da Espécie
10.
Mol Cell ; 55(5): 694-707, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25132175

RESUMO

Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome.


Assuntos
Arabidopsis/genética , Cromatina/metabolismo , Cromossomos de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Cromatina/ultraestrutura , Cromossomos de Plantas/química , DNA de Plantas/química , Epigênese Genética/genética , Genoma de Planta , Genômica/métodos , Mutação , Conformação de Ácido Nucleico
11.
BMC Genomics ; 14: 774, 2013 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-24206606

RESUMO

BACKGROUND: DNA methylation is an important epigenetic modification involved in many biological processes. Bisulfite treatment coupled with high-throughput sequencing provides an effective approach for studying genome-wide DNA methylation at base resolution. Libraries such as whole genome bisulfite sequencing (WGBS) and reduced represented bisulfite sequencing (RRBS) are widely used for generating DNA methylomes, demanding efficient and versatile tools for aligning bisulfite sequencing data. RESULTS: We have developed BS-Seeker2, an updated version of BS Seeker, as a full pipeline for mapping bisulfite sequencing data and generating DNA methylomes. BS-Seeker2 improves mappability over existing aligners by using local alignment. It can also map reads from RRBS library by building special indexes with improved efficiency and accuracy. Moreover, BS-Seeker2 provides additional function for filtering out reads with incomplete bisulfite conversion, which is useful in minimizing the overestimation of DNA methylation levels. We also defined CGmap and ATCGmap file formats for full representations of DNA methylomes, as part of the outputs of BS-Seeker2 pipeline together with BAM and WIG files. CONCLUSIONS: Our evaluations on the performance show that BS-Seeker2 works efficiently and accurately for both WGBS data and RRBS data. BS-Seeker2 is freely available at http://pellegrini.mcdb.ucla.edu/BS_Seeker2/ and the Galaxy server.


Assuntos
Metilação de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Ilhas de CpG/genética , Genoma Humano , Humanos , Alinhamento de Sequência , Sulfitos/química
12.
mBio ; 3(5)2012.
Artigo em Inglês | MEDLINE | ID: mdl-23015740

RESUMO

UNLABELLED: Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. IMPORTANCE: Propionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population. Surprisingly, we find that, unlike other well-studied bacteriophages, P. acnes phages are highly homogeneous and show a striking lack of genetic diversity, which is perhaps related to their unique and restricted habitat. They also share a broad ability to kill clinical isolates of P. acnes; phage resistance is not prevalent, but when detected, it appears to be conferred by chromosomally encoded immunity elements within the host genome. We believe that these phages display numerous features that would make them ideal candidates for the development of a phage-based therapy for acne.


Assuntos
Bacteriólise , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Variação Genética , Propionibacterium acnes/isolamento & purificação , Propionibacterium acnes/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Composição de Bases , DNA Viral/química , DNA Viral/genética , Genes Virais , Genoma Viral , Especificidade de Hospedeiro , Humanos , Dados de Sequência Molecular , Glândulas Sebáceas/microbiologia , Glândulas Sebáceas/virologia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Pele/microbiologia , Pele/virologia , Sintenia
13.
Science ; 336(6087): 1448-51, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22555433

RESUMO

Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause derepression of DNA-methylated genes and TEs but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, which are predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Inativação Gênica , Heterocromatina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Centrômero , Metilação de DNA , Elementos de DNA Transponíveis , Genes de Plantas , Heterocromatina/ultraestrutura , Histonas/metabolismo , Metilação , Mutação , RNA Interferente Pequeno/metabolismo , Transcrição Gênica , Transgenes , Regulação para Cima
14.
J Biol Chem ; 287(19): 15811-25, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22403401

RESUMO

Algae have recently gained attention as a potential source for biodiesel; however, much is still unknown about the biological triggers that cause the production of triacylglycerols. We used RNA-Seq as a tool for discovering genes responsible for triacylglycerol (TAG) production in Chlamydomonas and for the regulatory components that activate the pathway. Three genes encoding acyltransferases, DGAT1, DGTT1, and PDAT1, are induced by nitrogen starvation and are likely to have a role in TAG accumulation based on their patterns of expression. DGAT1 and DGTT1 also show increased mRNA abundance in other TAG-accumulating conditions (minus sulfur, minus phosphorus, minus zinc, and minus iron). Insertional mutants, pdat1-1 and pdat1-2, accumulate 25% less TAG compared with the parent strain, CC-4425, which demonstrates the relevance of the trans-acylation pathway in Chlamydomonas. The biochemical functions of DGTT1 and PDAT1 were validated by rescue of oleic acid sensitivity and restoration of TAG accumulation in a yeast strain lacking all acyltransferase activity. Time course analyses suggest than a SQUAMOSA promoter-binding protein domain transcription factor, whose mRNA increases precede that of lipid biosynthesis genes like DGAT1, is a candidate regulator of the nitrogen deficiency responses. An insertional mutant, nrr1-1, accumulates only 50% of the TAG compared with the parental strain in nitrogen-starvation conditions and is unaffected by other nutrient stresses, suggesting the specificity of this regulator for nitrogen-deprivation conditions.


Assuntos
Aciltransferases/genética , Chlamydomonas reinhardtii/genética , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Triglicerídeos/metabolismo , Aciltransferases/metabolismo , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Teste de Complementação Genética , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Genética Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Fatores de Tempo
15.
BMC Bioinformatics ; 12: 282, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21749710

RESUMO

BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion. CONCLUSIONS: The Algal Functional Annotation Tool aims to provide an integrated data-mining environment for algal genomics by combining data from multiple annotation databases into a centralized tool. This site is designed to expedite the process of functional annotation and the interpretation of gene lists, such as those derived from high-throughput RNA-seq experiments. The tool is publicly available at http://pathways.mcdb.ucla.edu.


Assuntos
Chlamydomonas reinhardtii/genética , Bases de Dados Genéticas , Eucariotos/genética , Software , Arabidopsis/genética , Expressão Gênica , Genômica , Internet
16.
Plant Cell ; 23(4): 1273-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21498682

RESUMO

In this work, we query the Chlamydomonas reinhardtii copper regulon at a whole-genome level. Our RNA-Seq data simulation and analysis pipeline validated a 2-fold cutoff and 10 RPKM (reads per kilobase of mappable length per million mapped reads) (~1 mRNA per cell) to reveal 63 CRR1 targets plus another 86 copper-responsive genes. Proteomic and immunoblot analyses captured 25% of the corresponding proteins, whose abundance was also dependent on copper nutrition, validating transcriptional regulation as a major control mechanism for copper signaling in Chlamydomonas. The impact of copper deficiency on the expression of several O2-dependent enzymes included steps in lipid modification pathways. Quantitative lipid profiles indicated increased polyunsaturation of fatty acids on thylakoid membrane digalactosyldiglycerides, indicating a global impact of copper deficiency on the photosynthetic apparatus. Discovery of a putative plastid copper chaperone and a membrane protease in the thylakoid suggest a mechanism for blocking copper utilization in the chloroplast. We also found an example of copper sparing in the N assimilation pathway: the replacement of copper amine oxidase by a flavin-dependent backup enzyme. Forty percent of the targets are previously uncharacterized proteins, indicating considerable potential for new discovery in the biology of copper.


Assuntos
Chlamydomonas/genética , Chlamydomonas/metabolismo , Cobre/metabolismo , Metabolismo/genética , Fenômenos Fisiológicos da Nutrição/genética , Biologia de Sistemas , Processos Autotróficos/genética , Sequência de Bases , Cobre/deficiência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Loci Gênicos/genética , Processos Heterotróficos/genética , Dados de Sequência Molecular , Oxirredução , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Epigenetics ; 6(3): 344-54, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21150311

RESUMO

De novo DNA methylation in Arabidopsis thaliana is catalyzed by the methyltransferase DRM2, a homolog of the mammalian de novo methyltransferase DNMT3. DRM2 is targeted to DNA by small interfering RNAs (siRNAs) in a process known as RNA-directed DNA Methylation (RdDM). While several components of the RdDM pathway are known, a functional understanding of the underlying mechanism is far from complete. We employed both forward and reverse genetic approaches to identify factors involved in de novo methylation. We utilized the FWA transgene, which is methylated and silenced when transformed into wild-type plants, but unmethylated and expressed when transformed into de novo methylation mutants. Expression of FWA is marked by a late flowering phenotype, which is easily scored in mutant versus wild-type plants. By reverse genetics we discovered the requirement for known RdDM effectors AGO6 and NRPE5a for efficient de novo methylation. A forward genetic approach uncovered alleles of several components of the RdDM pathway, including alleles of clsy1, ktf1, and nrpd/e2, which have not been previously shown to be required for the initial establishment of DNA methylation. Mutations were mapped and genes cloned by both traditional and whole genome sequencing approaches. The methodologies and the mutant alleles discovered will be instrumental in further studies of de novo DNA methylation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas , Metilação de DNA , Inativação Gênica , Genótipo , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Fenótipo , Transgenes
18.
Plant Cell ; 22(6): 2058-84, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20587772

RESUMO

The Chlamydomonas reinhardtii transcriptome was characterized from nutrient-replete and sulfur-depleted wild-type and snrk2.1 mutant cells. This mutant is null for the regulatory Ser-Thr kinase SNRK2.1, which is required for acclimation of the alga to sulfur deprivation. The transcriptome analyses used microarray hybridization and RNA-seq technology. Quantitative RT-PCR evaluation of the results obtained by these techniques showed that RNA-seq reports a larger dynamic range of expression levels than do microarray hybridizations. Transcripts responsive to sulfur deprivation included those encoding proteins involved in sulfur acquisition and assimilation, synthesis of sulfur-containing metabolites, Cys degradation, and sulfur recycling. Furthermore, we noted potential modifications of cellular structures during sulfur deprivation, including the cell wall and complexes associated with the photosynthetic apparatus. Moreover, the data suggest that sulfur-deprived cells accumulate proteins with fewer sulfur-containing amino acids. Most of the sulfur deprivation responses are controlled by the SNRK2.1 protein kinase. The snrk2.1 mutant exhibits a set of unique responses during both sulfur-replete and sulfur-depleted conditions that are not observed in wild-type cells; the inability of this mutant to acclimate to S deprivation probably leads to elevated levels of singlet oxygen and severe oxidative stress, which ultimately causes cell death. The transcriptome results for wild-type and mutant cells strongly suggest the occurrence of massive changes in cellular physiology and metabolism as cells become depleted for sulfur and reveal aspects of acclimation that are likely critical for cell survival.


Assuntos
Chlamydomonas reinhardtii/genética , Perfilação da Expressão Gênica , RNA de Algas/genética , Análise de Sequência de RNA/métodos , Enxofre/metabolismo , Sequência de Aminoácidos , Chlamydomonas reinhardtii/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA de Algas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
19.
Nature ; 466(7304): 388-92, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20512117

RESUMO

Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana using massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified 10-base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results indicate that nucleosome positioning influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA, indicating that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron-exon and exon-intron boundaries. RNA polymerase II (Pol II) was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is also enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Metilação de DNA/fisiologia , Nucleossomos/metabolismo , Arabidopsis/enzimologia , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , Metilação de DNA/genética , DNA Polimerase II/análise , DNA Polimerase II/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Éxons/genética , Genes de Plantas/genética , Genoma de Planta/genética , Humanos , Nuclease do Micrococo/metabolismo , Nucleossomos/genética , Análise de Sequência de DNA
20.
Proc Natl Acad Sci U S A ; 107(19): 8689-94, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20395551

RESUMO

Cytosine DNA methylation is a heritable epigenetic mark present in many eukaryotic organisms. Although DNA methylation likely has a conserved role in gene silencing, the levels and patterns of DNA methylation appear to vary drastically among different organisms. Here we used shotgun genomic bisulfite sequencing (BS-Seq) to compare DNA methylation in eight diverse plant and animal genomes. We found that patterns of methylation are very similar in flowering plants with methylated cytosines detected in all sequence contexts, whereas CG methylation predominates in animals. Vertebrates have methylation throughout the genome except for CpG islands. Gene body methylation is conserved with clear preference for exons in most organisms. Furthermore, genes appear to be the major target of methylation in Ciona and honey bee. Among the eight organisms, the green alga Chlamydomonas has the most unusual pattern of methylation, having non-CG methylation enriched in exons of genes rather than in repeats and transposons. In addition, the Dnmt1 cofactor Uhrf1 has a conserved function in maintaining CG methylation in both transposons and gene bodies in the mouse, Arabidopsis, and zebrafish genomes.


Assuntos
Metilação de DNA/genética , Evolução Molecular , Plantas/genética , Animais , Arabidopsis/genética , Éxons/genética , Íntrons/genética , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Transativadores/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA