Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 647: 1594-1603, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180363

RESUMO

Eutrophication of freshwater ecosystems and harmful algal blooms (HABs) are an ongoing concern affecting water quality in the Great Lakes watershed of North America. Despite binational management efforts, Lake Erie has been at the center of dissolved reactive phosphate driven eutrophication research due to its repeated cycles of algae blooms. We investigated the Detroit River, the largest source of water entering Lake Erie, with the objectives to (1) characterize Detroit River phosphate levels within water and sediment, and (2) use multiple chemical and isotopic tracers to identify nutrient sources in the Detroit River. Riverine water and sediment samples were collected at 23 locations across 8 transects of the Detroit River. The bulk δ15N values from sediments were enriched compared the δ15N values of nitrate from water samples, consistent with biogeochemical cycling in the sediment. Principle component analysis of multiple chemical tracers from water samples found spatial variation consistent with multiple sources including synthetic and manure-derived fertilizers and wastewater effluent. The concentrations of phosphate dissolved in water were within regulatory guidelines; however, sediments had elevated concentrations of both water- and acid-extractable phosphate. Sediment-sequestered legacy phosphorus historically deposited in the Detroit River may be transported into Lake Erie and, if mobilized into the water column, be an unrecognized internal-load that contributes to algal bloom events. Globally, freshwater ecosystems are impacted by numerous non-point source phosphorus inputs contributing to eutrophication and the use of multiple tracer approaches will increase our ability to effectively manage aquatic ecosystems.

2.
Rapid Commun Mass Spectrom ; 31(17): 1405-1414, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28590512

RESUMO

RATIONALE: The application of stable isotopes to foraging ecology is dependent on understanding life-history and environmental factors unrelated to diet that may influence isotopic composition. Diet-tissue discrimination factors (DTDFs) and turnover rates will increase the accuracy of isotope-based studies. Furthermore, little consideration has been given to the effects of temperature or life-history stage on isotopic ratios despite the prevalence of variation in temperature and growth rates throughout life. METHODS: We measured δ13 C and δ15 N values with an elemental analyzer coupled to a continuous flow isotope ratio mass spectrometer. These values were used to estimate turnover and DTDFs for Emerald Shiners (Notropis atherinoides), a common North American freshwater forage fish. Fish were assigned to a temperature treatment, either 10°C (Low) or 20°C (High), and provided one of three diets (commercial pellet, Artemia salina, or Hemimysis anomala). At regular intervals fish were sampled and the isotopic compositions of whole body and liver tissues were determined. RESULTS: Tissue turnover rates for fish fed Artemia were faster for liver than for whole body, but were also influenced by temperature. Turnover occurred faster at higher temperatures for body and liver δ15 N values, but not for δ13 C values. The pellet and Hemimysis treatments were in isotopic equilibrium from the start of the experiment and estimated DTDFs based on these treatments were lower than assumed for Δ15 N (+0.6 to 2.7‰) and variable, but within expected ranges for Δ13 C (-1.9 to +1.5‰). CONCLUSIONS: The results for Emerald Shiners differed from commonly made assumptions for applying stable isotopes to ecological questions, possibly related to a bias in the use of juveniles in studies of turnover and DTDFs and assumptions regarding thermal-independence of isotopic relationships. The species-specific DTDF and tissue turnover estimates provided here will inform interpretations of stable isotope data for smaller fish species and improve food-web studies.


Assuntos
Isótopos de Carbono/análise , Dieta , Peixes/fisiologia , Isótopos de Nitrogênio/análise , Animais , Isótopos de Carbono/metabolismo , Comportamento Alimentar/fisiologia , Peixes/metabolismo , Fígado/metabolismo , Espectrometria de Massas , Isótopos de Nitrogênio/metabolismo , Especificidade de Órgãos , Temperatura
3.
J Evol Biol ; 30(10): 1810-1820, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28590579

RESUMO

Gene flow is expected to limit adaptive divergence, but the ecological and behavioural factors that govern gene flow are still poorly understood, particularly at the earliest stages of population divergence. Reduced gene flow through mate choice (sexual isolation) can evolve even under conditions of subtle population divergence if intermediate phenotypes have reduced fitness. We indirectly tested the hypothesis that mate choice has evolved between coexisting littoral and pelagic ecotypes of polyphenic pumpkinseed sunfish (Lepomis gibbosus) that have diverged in morphology and resource use and where intermediate phenotypes have reduced performance. We assessed the ecotype of nesting males and females using stable isotope estimates of diet and a divergent male morphological trait, oral jaw width. We found positive assortative mating between ecotypes in a common spawning habitat along exposed lake shorelines, but contrary to expectations, assortative mating was variably expressed between two sampling years. Although the factors that influence variable assortative mating remain unclear, our results are consistent with mate choice being expressed by ecotypes. Despite being variably expressed, mate choice will reduce gene flow between ecotypes and could contribute to further adaptive divergence depending on its frequency and strength in the population. Our findings add to a growing body of evidence indicating mate choice behaviour can be a plastic trait, an idea that should be more explicitly considered in empirical studies of mate choice as well as conceptual frameworks of mate choice evolution and adaptive divergence.


Assuntos
Ecótipo , Perciformes/fisiologia , Comportamento Sexual Animal/fisiologia , Adaptação Fisiológica/genética , Animais , Feminino , Fluxo Gênico , Especiação Genética , Masculino , Perciformes/genética
4.
J Evol Biol ; 29(3): 633-44, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26688005

RESUMO

Disruptive selection is a process that can result in multiple subgroups within a population, which is referred to as diversification. Foraging-related diversification has been described in many taxa, but many questions remain about the contribution of such diversification to reproductive isolation and potentially sympatric speciation. Here, we use stable isotope analysis of diet and morphological analysis of body shape to examine phenotypic divergence between littoral and pelagic foraging ecomorphs in a population of pumpkinseed sunfish (Lepomis gibbosus). We then examine reproductive isolation between ecomorphs by comparing the isotopic compositions of nesting males to eggs from their nests (a proxy for maternal diet) and use nine microsatellite loci to examine genetic divergence between ecomorphs. Our data support the presence of distinct foraging ecomorphs in this population and indicate that there is significant positive assortative mating based on diet. We did not find evidence of genetic divergence between ecomorphs, however, indicating that isolation is either relatively recent or is not strong enough to result in genetic divergence at the microsatellite loci. Based on our findings, pumpkinseed sunfish represent a system in which to further explore the mechanisms by which natural and sexual selection contribute to diversification, prior to the occurrence of sympatric speciation.


Assuntos
Perciformes/genética , Polimorfismo Genético , Comportamento Sexual Animal/fisiologia , Animais , Evolução Biológica , Isótopos de Carbono/análise , Dieta , Ecossistema , Feminino , Masculino , Repetições de Microssatélites , Comportamento de Nidação , Isótopos de Nitrogênio/análise , Ontário , Perciformes/fisiologia , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA