Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051957

RESUMO

Metabolic dysfunction-associated steatotic liver disease is closely associated with other features of the metabolic syndrome such as type 2 diabetes. The progression of the disease may lead to liver fibrosis, which is the main predictor of major adverse liver outcomes. Insulin resistance plays a major role in the pathogenesis of the disease. A component of fasting hyperinsulinemia is a failure of the liver to adjust the peripheral level of insulin due to reduced clearance. The associated fasting hyperinsulinemia has been independently associated as a predictor of major adverse liver outcomes and major adverse cardiovascular events. In this review, we discuss the potential mechanism and entanglement between liver fibrosis and hyperinsulinemia, and we hypothesize that the measure of fasting insulin could become a hepatic functional test within the armamentarium of noninvasive tests for the assessment of Metabolic dysfunction-associated steatotic liver disease.

2.
Expert Opin Investig Drugs ; 32(9): 803-811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37755339

RESUMO

INTRODUCTION: 'Insulin sensitizers' derived discoveries of the Takeda Company in 1970s. Pioglitazone remains the best in class with beneficial pleiotropic pharmacology, although use is limited by tolerability issues. Various attempts to expand out of this class assumed the primary molecular target was the transcription factor, PPARγ. Findings over the last 10 years have identified new targets of thiazolidinediones (TZDs) that should alter the drug discovery paradigm. AREAS COVERED: We review structural classes of experimental insulin sensitizer drugs, some of which have attained limited approval in some markets. The TZD pioglitazone, originally approved in 1999 as a secondary treatment for type 2 diabetes, has demonstrated benefit in apparently diverse spectrums of disease from cardiovascular to neurological issues. New TZDs modulate a newly identified mitochondrial target (the mitochondrial pyruvate carrier) to reprogram metabolism and produce insulin sensitizing pharmacology devoid of tolerability issues. EXPERT OPINION: Greater understanding of the mechanism of action of insulin sensitizing drugs can expand the rationale for the fields of treatment and potential for treatment combinations. This understanding can facilitate the registration and broader use of agents with that impact the pathophysiology that underlies chronic metabolic diseases as well as host responses to environmental insults including pathogens, insulin sensitizer, MPC, mitochondrial target, metabolic reprogramming, chronic and infectious disease.

3.
Sci Immunol ; 8(82): eadf0348, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36821695

RESUMO

The relationship between diabetes and coronavirus disease 2019 (COVID-19) is bidirectional: Although individuals with diabetes and high blood glucose (hyperglycemia) are predisposed to severe COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also cause hyperglycemia and exacerbate underlying metabolic syndrome. Therefore, interventions capable of breaking the network of SARS-CoV-2 infection, hyperglycemia, and hyperinflammation, all factors that drive COVID-19 pathophysiology, are urgently needed. Here, we show that genetic ablation or pharmacological inhibition of mitochondrial pyruvate carrier (MPC) attenuates severe disease after influenza or SARS-CoV-2 pneumonia. MPC inhibition using a second-generation insulin sensitizer, MSDC-0602K (MSDC), dampened pulmonary inflammation and promoted lung recovery while concurrently reducing blood glucose levels and hyperlipidemia after viral pneumonia in obese mice. Mechanistically, MPC inhibition enhanced mitochondrial fitness and destabilized hypoxia-inducible factor-1α, leading to dampened virus-induced inflammatory responses in both murine and human lung macrophages. We further showed that MSDC enhanced responses to nirmatrelvir (the antiviral component of Paxlovid) to provide high levels of protection against severe host disease development after SARS-CoV-2 infection and suppressed cellular inflammation in human COVID-19 lung autopsies, demonstrating its translational potential for treating severe COVID-19. Collectively, we uncover a metabolic pathway that simultaneously modulates pulmonary inflammation, tissue recovery, and host metabolic health, presenting a synergistic therapeutic strategy to treat severe COVID-19, particularly in patients with underlying metabolic disease.


Assuntos
COVID-19 , Diabetes Mellitus , Hiperglicemia , Humanos , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos , SARS-CoV-2/metabolismo , Glicemia/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo
4.
Mol Metab ; 70: 101694, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801448

RESUMO

OBJECTIVE: The mitochondrial pyruvate carrier (MPC) has emerged as a therapeutic target for treating insulin resistance, type 2 diabetes, and nonalcoholic steatohepatitis (NASH). We evaluated whether MPC inhibitors (MPCi) might correct impairments in branched chain amino acid (BCAA) catabolism, which are predictive of developing diabetes and NASH. METHODS: Circulating BCAA concentrations were measured in people with NASH and type 2 diabetes, who participated in a recent randomized, placebo-controlled Phase IIB clinical trial to test the efficacy and safety of the MPCi MSDC-0602K (EMMINENCE; NCT02784444). In this 52-week trial, patients were randomly assigned to placebo (n = 94) or 250 mg MSDC-0602K (n = 101). Human hepatoma cell lines and mouse primary hepatocytes were used to test the direct effects of various MPCi on BCAA catabolism in vitro. Lastly, we investigated how hepatocyte-specific deletion of MPC2 affects BCAA metabolism in the liver of obese mice and MSDC-0602K treatment of Zucker diabetic fatty (ZDF) rats. RESULTS: In patients with NASH, MSDC-0602K treatment, which led to marked improvements in insulin sensitivity and diabetes, had decreased plasma concentrations of BCAAs compared to baseline while placebo had no effect. The rate-limiting enzyme in BCAA catabolism is the mitochondrial branched chain ketoacid dehydrogenase (BCKDH), which is deactivated by phosphorylation. In multiple human hepatoma cell lines, MPCi markedly reduced BCKDH phosphorylation and stimulated branched chain keto acid catabolism; an effect that required the BCKDH phosphatase PPM1K. Mechanistically, the effects of MPCi were linked to activation of the energy sensing AMP-dependent protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) kinase signaling cascades in vitro. BCKDH phosphorylation was reduced in liver of obese, hepatocyte-specific MPC2 knockout (LS-Mpc2-/-) mice compared to wild-type controls concomitant with activation of mTOR signaling in vivo. Finally, while MSDC-0602K treatment improved glucose homeostasis and increased the concentrations of some BCAA metabolites in ZDF rats, it did not lower plasma BCAA concentrations. CONCLUSIONS: These data demonstrate novel cross talk between mitochondrial pyruvate and BCAA metabolism and suggest that MPC inhibition leads to lower plasma BCAA concentrations and BCKDH phosphorylation by activating the mTOR axis. However, the effects of MPCi on glucose homeostasis may be separable from its effects on BCAA concentrations.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Ratos , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transportadores de Ácidos Monocarboxílicos , Ratos Zucker , Aminoácidos de Cadeia Ramificada/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Glucose , Serina-Treonina Quinases TOR/metabolismo
5.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711589

RESUMO

The geroscience hypothesis states that a therapy that prevents the underlying aging process should prevent multiple aging related diseases. The mTOR (mechanistic target of rapamycin)/insulin and NAD+ (nicotinamide adenine dinucleotide) pathways are two of the most validated aging pathways. Yet, it's largely unclear how they might talk to each other in aging. In genome-wide CRISPRa screening with a novel class of N-O-Methyl-propanamide-containing compounds we named BIOIO-1001, we identified lipid metabolism centering on SIRT3 as a point of intersection of the mTOR/insulin and NAD+ pathways. In vivo testing indicated that BIOIO-1001 reduced high fat, high sugar diet-induced metabolic derangements, inflammation, and fibrosis, each being characteristic of non-alcoholic steatohepatitis (NASH). An unbiased screen of patient datasets suggested a potential link between the anti-inflammatory and anti-fibrotic effects of BIOIO-1001 in NASH models to those in amyotrophic lateral sclerosis (ALS). Directed experiments subsequently determined that BIOIO-1001 was protective in both sporadic and familial ALS models. Both NASH and ALS have no treatments and suffer from a lack of convenient biomarkers to monitor therapeutic efficacy. A potential strength in considering BIOIO-1001 as a therapy is that the blood biomarker that it modulates, namely plasma triglycerides, can be conveniently used to screen patients for responders. More conceptually, to our knowledge BIOIO-1001 is a first therapy that fits the geroscience hypothesis by acting on multiple core aging pathways and that can alleviate multiple conditions after they have set in.

6.
Front Mol Biosci ; 9: 929328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782864

RESUMO

Alzheimer's (AD) and Parkinson's Diseases (PD) are common neurodegenerative disorders growing in incidence and prevalence and for which there are no disease-modifying treatments. While there are considerable complexities in the presentations of these diseases, the histological pictures of these pathologies, as well as several rare genetic predispositions for each, point to the involvement of maladaptive protein processing and inflammation. Importantly, the common presentations of AD and PD are connected to aging and to dysmetabolism, including common co-diagnosis of metabolic syndrome or diabetes. Examination of anti-diabetic therapies in preclinical models and in some observational clinical studies have suggested effectiveness of the first generation insulin sensitizer pioglitazone in both AD and PD. Recently, the mitochondrial pyruvate carrier (MPC) was shown to be a previously unrecognized target of pioglitazone. New insulin sensitizers are in development that can be dosed to full engagement of this previously unappreciated mitochondrial target. Here we review molecular mechanisms that connect modification of pyruvate metabolism with known liabilities of AD and PD. The mechanisms involve modification of autophagy, inflammation, and cell differentiation in various cell types including neurons, glia, macrophages, and endothelium. These observations have implications for the understanding of the general pathology of neurodegeneration and suggest general therapeutic approaches to disease modification.

7.
Mol Neurobiol ; 59(10): 6170-6182, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35895232

RESUMO

A growing body of evidence supports the idea that mitochondrial dysfunction might represent a key feature of Parkinson's disease (PD). Central regulators of energy production, mitochondria, are also involved in several other essential functions such as cell death pathways and neuroinflammation which make them a potential therapeutic target for PD management. Interestingly, recent studies related to PD have reported a neuroprotective effect of targeting mitochondrial pyruvate carrier (MPC) by the insulin sensitizer MSDC-0160. As the sole point of entry of pyruvate into the mitochondrial matrix, MPC plays a crucial role in energetic metabolism which is impacted in PD. This study therefore aimed at providing insights into the mechanisms underlying the neuroprotective effect of MSDC-0160. We investigated behavioral, cellular, and metabolic impact of chronic MSDC-0160 treatment in unilateral 6-OHDA PD rats. We evaluated mitochondrially related processes through the expression of pivotal mitochondrial enzymes in dorsal striatal biopsies and the level of metabolites in serum samples using nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. MSDC-0160 treatment in unilateral 6-OHDA rats improved motor behavior, decreased dopaminergic denervation, and reduced mTOR activity and neuroinflammation. Concomitantly, MSDC-0160 administration strongly modified energy metabolism as revealed by increased ketogenesis, beta oxidation, and glutamate oxidation to satisfy energy needs and maintain energy homeostasis. MSDC-0160 exerts its neuroprotective effect through reorganization of multiple pathways connected to energy metabolism.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/farmacologia , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Piridinas , Ratos , Tiazolidinedionas
8.
Mol Metab ; 55: 101409, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863942

RESUMO

BACKGROUND: Chronic disease appears connected to obesity. However, evidence suggests that chronic metabolic diseases are more specifically related to adipose dysfunction rather than to body weight itself. SCOPE OF REVIEW: Further study of the first generation "insulin sensitizer" pioglitazone and molecules based on its structure suggests that is possible to decouple body weight from the metabolic dysfunction that drives adverse outcomes. The growing understanding of the mechanism of action of these agents together with advances in the pathophysiology of chronic metabolic disease offers a new approach to treat chronic conditions, such as type 2 diabetes, fatty liver disease, and their common organ and vascular sequelae. MAJOR CONCLUSIONS: We hypothesize that treating adipocyte dysfunction with new insulin sensitizers might significantly impact the interface of infectious disease and chronic metabolic disease.


Assuntos
Doença Crônica/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Tiazolidinedionas/farmacologia , Tecido Adiposo/metabolismo , COVID-19 , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamação , Insulina/metabolismo , Resistência à Insulina , Doenças Metabólicas/metabolismo , Mitocôndrias , Hepatopatia Gordurosa não Alcoólica , Pioglitazona/metabolismo
9.
J Biol Chem ; 296: 100807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34022222

RESUMO

Insulin sensitizers and incretin mimetics are antidiabetic agents with vastly different mechanisms of action. Thiazolidinedione (TZD) insulin sensitizers are associated with weight gain, whereas glucagon-like peptide-1 receptor agonists can induce weight loss. We hypothesized that combination of a TZD insulin sensitizer and the glucagon-like peptide-1 receptor agonist liraglutide would more significantly improve mouse models of diabetes and nonalcoholic steatohepatitis (NASH). Diabetic db/db and MS-NASH mice were treated with the TZD MSDC-0602K by oral gavage, liraglutide (Lira) by s.c. injection, or combination 0602K+Lira. Lira slightly reduced body weight and modestly improved glycemia in db/db mice. Comparatively, 0602K-treated and 0602K+Lira-treated mice exhibited slight weight gain but completely corrected glycemia and improved glucose tolerance. 0602K reduced plasma insulin, whereas Lira further increased the hyperinsulinemia of db/db mice. Surprisingly, 0602K+Lira treatment reduced plasma insulin and C-peptide to the same extent as mice treated with 0602K alone. 0602K did not reduce glucose-stimulated insulin secretion in vivo, or in isolated islets, indicating the reduced insulinemia was likely compensatory to improved insulin sensitivity. In MS-NASH mice, both 0602K or Lira alone improved plasma alanine aminotransferase and aspartate aminotransferase, as well as liver histology, but more significant improvements were observed with 0602K+Lira treatment. 0602K or 0602K+Lira also increased pancreatic insulin content in both db/db and MS-NASH mice. In conclusion, MSDC-0602K corrected glycemia and reduced insulinemia when given alone, or in combination with Lira. However, 0602K+Lira combination more significantly improved glucose tolerance and liver histology, suggesting that this combination treatment may be an effective therapeutic strategy for diabetes and NASH.


Assuntos
Acetofenonas/uso terapêutico , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Liraglutida/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Tiazolidinedionas/uso terapêutico , Animais , Quimioterapia Combinada , Feminino , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
10.
Nutrients ; 12(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291653

RESUMO

Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs-pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)-regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.


Assuntos
Tecido Adiposo Branco/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos/metabolismo , Obesidade/metabolismo , Tiazolidinedionas/farmacologia , Triglicerídeos/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Ácidos Graxos Ômega-3/administração & dosagem , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Pioglitazona/farmacologia , Tiazolidinedionas/administração & dosagem
11.
J Hepatol ; 73(6): 1322-1332, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32610115

RESUMO

BACKGROUND & AIMS: Liver biopsies are a critical component of pivotal studies in non-alcoholic steatohepatitis (NASH), constituting inclusion criteria, risk stratification factors and endpoints. We evaluated the reliability of NASH Clinical Research Network scoring of liver biopsies in a NASH clinical trial. METHODS: Digitized slides of 678 biopsies from 339 patients with paired biopsies randomized into the EMMINENCE study - examining a novel insulin sensitizer (MSDC-0602K) in NASH - were read independently by 3 hepatopathologists blinded to treatment code and scored using the NASH CRN histological scoring system. Various endpoints were computed from these scores. RESULTS: Inter-reader linearly weighted kappas were 0.609, 0.484, 0.328, and 0.517 for steatosis, fibrosis, lobular inflammation, and ballooning, respectively. Inter-reader unweighted kappas were 0.400 for the diagnosis of NASH, 0.396 for NASH resolution without worsening fibrosis, and 0.366 for fibrosis improvement without worsening NASH. In the current study, 46.3% of the patients included in the study based on 1 hepatopathologist's qualifying reading were deemed not to meet the study's histologic inclusion criteria by at least 1 of the 3 hepatopathologists. The MSDC-0602K treatment effect was lowest for those histologic features with lower inter-reader reliability. Simulations show that the lack of reliability of endpoints and inclusion criteria can drastically reduce study power - from >90% in a well-powered study to as low as 40%. CONCLUSIONS: The reliability of hepatopathologists' liver biopsy evaluation using currently accepted criteria is suboptimal. This lack of reliability may affect NASH pivotal studies by introducing patients who do not meet NASH study entry criteria, misclassifying fibrosis subgroups, and attenuating apparent treatment effects. LAY SUMMARY: Since liver biopsy analysis plays such an important role in clinical studies of non-alcoholic steatohepatitis, it is important to understand the reliability of hepato-pathologist readings. We examined both inter- and intra-reader variability in a large data set of paired liver biopsies from a clinical trial. We found very poor inter-reader and modest intra-reader variability. This result has important implications for entry criteria, fibrosis stratification, and the ability to measure a treatment effect in clinical trials.


Assuntos
Biópsia , Diabetes Mellitus Tipo 2 , Cirrose Hepática/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Acetofenonas/farmacologia , Biópsia/métodos , Biópsia/normas , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Progressão da Doença , Feminino , Humanos , Hipoglicemiantes/farmacologia , Resistência à Insulina , Cirrose Hepática/etiologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/terapia , Prognóstico , Reprodutibilidade dos Testes , Projetos de Pesquisa , Medição de Risco/métodos , Tiazolidinedionas/farmacologia
12.
Expert Opin Investig Drugs ; 29(2): 191-196, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928475

RESUMO

Introduction: NASH and type 2 diabetes (T2D) are clinical definitions that overlap and result from metabolic dysfunction caused by over-nutrition relative to metabolic need. This volume details drug development programs aimed at specific NASH pathology with a focus on liver outcomes; this commentary suggests a metabolic approach that should not be overlooked based on a new understanding of insulin sensitizers.Areas covered: The overlap of NASH and T2D with respect to metabolic syndrome is discussed in the context of new understandings of insulin sensitizers. Adverse clinical outcomes in subjects with advanced NAFLD (e.g. NASH) and advanced metabolic dysfunction (e.g., T2D) are primarily due to cardiovascular issues. Clinical evidence suggests that insulin resistance and hyperinsulinemia predict adverse cardiovascular outcomes. NALFD/NASH significantly contributes to insulin resistance and hyperinsulinemia. A new insulin sensitizer that targets the newly identified mitochondrial pyruvate carrier could provide an approach.Expert opinion: A metabolic approach is needed for the treatment of NASH. Clinical studies are underway to determine whether a new insulin sensitizer that targets pyruvate metabolism can impact NASH, T2D, and cardiovascular disease. A broader view of metabolic disease may provide a more assessable way to track therapeutic benefit.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Doenças Cardiovasculares/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Desenvolvimento de Medicamentos , Humanos , Resistência à Insulina , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/fisiopatologia , Múltiplas Afecções Crônicas , Hepatopatia Gordurosa não Alcoólica/fisiopatologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-35224554

RESUMO

Epidemiological studies suggest a link between type-2 diabetes and Parkinson's disease (PD) risk. Treatment of type-2 diabetes with insulin sensitizing drugs lowers the risk of PD. We previously showed that the insulin sensitizing drug, MSDC-0160, ameliorates pathogenesis in some animal models of PD. MSDC-0160 reversibly binds the mitochondrial pyruvate carrier (MPC) protein complex, which has an anti-inflammatory effect and restores metabolic deficits. Since PD is characterized by the deposition of α-synuclein (αSyn), we hypothesized that inhibiting the MPC might directly inhibit αSyn aggregation in vivo in mammals. To answer if modulation of MPC can reduce the development of αSyn assemblies, and reduce neurodegeneration, we treated two chronic and progressive mouse models; a viral vector-based αSyn overexpressing model and a pre-formed fibril (PFF) αSyn seeding model with MSDC-0160. These two models present distinct types of αSyn pathology but lack inflammatory or autophagy deficits. Contrary to our hypothesis, we found that a modulation of MPC in these models did not reduce the accumulation of αSyn aggregates or mitigate neurotoxicity. Instead, MSDC-0160 changed the post-translational modification and aggregation features of αSyn. These results are consistent with the lack of a direct effect of MPC modulation on synuclein clearance in these models.

14.
J Hepatol ; 72(4): 613-626, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697972

RESUMO

BACKGROUND & AIMS: MSDC-0602K is a novel insulin sensitizer designed to preferentially target the mitochondrial pyruvate carrier while minimizing direct binding to the transcriptional factor PPARγ. Herein, we aimed to assess the efficacy and safety of MSDC-0602K in patients with non-alcoholic steatohepatitis. METHODS: Patients with biopsy-confirmed NASH and fibrosis (F1-F3) were randomized to daily oral placebo, or 1 of 3 MSDC-0602K doses in a 52-week double-blind study. The primary efficacy endpoint was hepatic histological improvement of ≥2 points in non-alcoholic fatty liver disease activity score (NAS) with a ≥1-point reduction in either ballooning or lobular inflammation and no increase in fibrosis stage at 12 months. Secondary endpoints included NAS improvement without worsening fibrosis, NASH resolution, and fibrosis reduction. Exploratory endpoints included changes in insulin sensitivity, liver injury and liver fibrosis markers. RESULTS: Patients were randomly assigned to placebo (n = 94), or 62.5 mg (n = 99), 125 mg (n = 98), or 250 mg (n = 101) of MSDC-0602K. At baseline, glycated hemoglobin was 6.4 ±â€¯1.0%, 61.5% of patients had fibrosis F2/F3 and the average NAS was 5.3. The primary endpoint was reached in 29.7%, 29.8%, 32.9% and 39.5% of patients in the placebo, 62.5 mg, 125 mg and 250 mg dose arms, respectively, with adjusted odds ratios relative to placebo of 0.89 (95% CI 0.44-1.81), 1.22 (95% CI 0.60-2.48), and 1.64 (95% CI 0.83-3.27). The 2 highest doses of MSDC-0602K led to significant reductions in glucose, glycated hemoglobin, insulin, liver enzymes and NAS compared to placebo. The incidence of hypoglycemia and PPARγ-agonist-associated events such as edema and fractures were similar in the placebo and MSDC-0602K groups. CONCLUSIONS: MSDC-0602K did not demonstrate statistically significant effects on primary and secondary liver histology endpoints. However, effects on non-invasive measures of liver cell injury and glucose metabolism support further exploration of MSDC-0602K's safety and potential efficacy in patients with type 2 diabetes and liver injury. [ClinicalTrials.gov Identifier: NCT02784444]. LAY SUMMARY: First-generation insulin sensitizers are used to treat type 2 diabetes, but are associated with side effects including edema, bone fractures, and hypoglycemia. MSDC-0602K is a second-generation insulin sensitizer designed to reduce these side effects. We hypothesized that insulin sensitization could improve non-alcoholic steatohepatitis. In the current study of patients with non-alcoholic steatohepatitis, MSDC-0602K did not demonstrate significant effects on liver histology with the biopsy techniques used. However, useful information was gained for the design of future studies and MSDC-0602K significantly decreased fasting glucose, insulin, glycated hemoglobin, and markers of liver injury without dose-limiting side effects.


Assuntos
Acetofenonas/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Tiazolidinedionas/efeitos adversos , Acetofenonas/administração & dosagem , Administração Oral , Adulto , Idoso , Aspartato Aminotransferases/sangue , Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/sangue , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/sangue , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Tiazolidinedionas/administração & dosagem , Resultado do Tratamento
16.
Expert Opin Investig Drugs ; 27(7): 631-636, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29950116

RESUMO

INTRODUCTION: Non-alcoholic steatohepatitis (NASH) is a serious form of non-alcoholic fatty liver disease (NAFLD) for which there is no marketed treatments. NAFLD is initiated by excess intake of nutrients and recent evidence has pinpointed the mitochondrial pyruvate carrier (MPC) as a mediator of the nutritional overload signals. Areas covered: An overview is given of MSDC-0602K, a new agent in development that modulates the MPC and as such treats the symptoms of fatty liver including dysfunctional lipid metabolism, inflammation, and insulin resistance as well as the key liver pathology including fibrosis. METHODOLOGY: The current evaluation is written from the direct experience of the authors and review of published literature using standard search techniques. Expert Opinion: The mechanism of action of MSDC-0602K appears to be suited for treatment of the NASH pathophysiology. An ongoing phase 2b dose-ranging trial should demonstrate whether or not MSDC-0602K has the potential to be a cornerstone metabolic therapy for the treatment of NASH.


Assuntos
Acetofenonas/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Tiazolidinedionas/farmacologia , Animais , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia
17.
Mol Neurodegener ; 13(1): 28, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29793507

RESUMO

Several molecular pathways are currently being targeted in attempts to develop disease-modifying therapies to slow down neurodegeneration in Parkinson's disease. Failure of cellular energy metabolism has long been implicated in sporadic Parkinson's disease and recent research on rare inherited forms of Parkinson's disease have added further weight to the importance of energy metabolism in the disease pathogenesis. There exists a new class of anti-diabetic insulin sensitizers in development that inhibit the mitochondrial pyruvate carrier (MPC), a protein which mediates the import of pyruvate across the inner membrane of mitochondria. Pharmacological inhibition of the MPC was recently found to be strongly neuroprotective in multiple neurotoxin-based and genetic models of neurodegeneration which are relevant to Parkinson's disease. In this review, we summarize the neuroprotective effects of MPC inhibition and discuss the potential putative underlying mechanisms. These mechanisms involve augmentation of autophagy via attenuation of the activity of the mammalian target of rapamycin (mTOR) in neurons, as well as the inhibition of neuroinflammation, which is at least partly mediated by direct inhibition of MPC in glia cells. We conclude that MPC is a novel and potentially powerful therapeutic target that warrants further study in attempts to slow Parkinson's disease progression.


Assuntos
Metabolismo Energético/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , Animais , Humanos , Proteínas de Transporte da Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos
18.
Hepatology ; 67(5): 2055-2056, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28317182
19.
Exp Physiol ; 102(8): 985-999, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28597936

RESUMO

NEW FINDINGS: What is the central question of this study? The antidiabetic effects of thiazolidinedione (TZD) drugs may be mediated in part by a molecular interaction with the constituent proteins of the mitochondrial pyruvate carrier complex (MPC1 and MPC2). We examined the ability of a mutant mouse strain expressing an N-terminal truncation of MPC2 (Mpc2Δ16 mice) to respond to TZD treatment. What is the main finding and its importance? The response of Mpc2Δ16 mice to TZD treatment was not significantly different from that of wild-type C57BL6/J control animals, suggesting that the 16 N-terminal amino acids of MPC2 are dispensable for the effects of TZD treatment. Rosiglitazone and pioglitazone are thiazolidinedione (TZD) compounds that have been used clinically as insulin-sensitizing drugs and are generally believed to mediate their effects via activation of the peroxisome proliferator-activated receptor Î³ (PPARγ). Recent work has shown that it is possible to synthesize TZD compounds with potent insulin-sensitizing effects and markedly diminished affinity for PPARγ. Both clinically used TZDs and investigational PPARγ-sparing TZDs, such as MSDC-0602, interact with the mitochondrial pyruvate carrier (MPC) and inhibit its activity. The MPC complex is composed of two proteins, MPC1 and MPC2. Herein, we used mice expressing a hypomorphic MPC2 protein missing 16 amino acids in the N-terminus (Mpc2Δ16 mice) to determine the effects of these residues in mediating the insulin-sensitizing effects of TZDs in diet-induced obese mice. We found that both pioglitazone and MSDC-0602 elicited their beneficial metabolic effects, including improvement in glucose tolerance, attenuation of hepatic steatosis, reduction of adipose tissue inflammation and stimulation of adipocyte browning, in both wild-type and Mpc2Δ16 mice after high-fat diet feeding. In addition, truncation of MPC2 failed to attenuate the interaction between TZDs and the MPC in a bioluminescence resonance energy transfer-based assay or to affect the suppression of pyruvate-stimulated respiration in cells. Collectively, these data suggest that the interaction between TZDs and MPC2 is not affected by loss of the N-terminal 16 amino acids nor are these residues required for the insulin-sensitizing effects of these compounds.


Assuntos
Insulina/metabolismo , Mitocôndrias/metabolismo , Pró-Proteína Convertase 2/metabolismo , Acetofenonas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Proteínas de Transporte de Ânions , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , PPAR gama/metabolismo , Pioglitazona , Rosiglitazona , Tiazolidinedionas/farmacologia
20.
Hepatol Commun ; 1(3): 193-197, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-29404453

RESUMO

Modifying the entry of pyruvate into mitochondria may provide a unique approach to treat metabolic disease. The pharmacology of a new class of insulin sensitizers directed against a newly identified mitochondrial target may treat many aspects of nonalcoholic steatohepatitis, including fibrosis. This commentary suggests treating nonalcoholic steatohepatitis through a newly identified mechanism consistent with pathophysiology. (Hepatology Communications 2017;1:193-197).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA