Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 312, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191523

RESUMO

We study the problem of learning the parameters for the Hamiltonian of a quantum many-body system, given limited access to the system. In this work, we build upon recent approaches to Hamiltonian learning via derivative estimation. We propose a protocol that improves the scaling dependence of prior works, particularly with respect to parameters relating to the structure of the Hamiltonian (e.g., its locality k). Furthermore, by deriving exact bounds on the performance of our protocol, we are able to provide a precise numerical prescription for theoretically optimal settings of hyperparameters in our learning protocol, such as the maximum evolution time (when learning with unitary dynamics) or minimum temperature (when learning with Gibbs states). Thanks to these improvements, our protocol has practical scaling for large problems: we demonstrate this with a numerical simulation of our protocol on an 80-qubit system.

2.
Nat Commun ; 14(1): 3751, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407571

RESUMO

Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a different distribution to the training distribution. Here, we prove out-of-distribution generalization for the task of learning an unknown unitary. In particular, we show that one can learn the action of a unitary on entangled states having trained only product states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics on near term quantum hardware, and further opens up new methods for both the classical and quantum compilation of quantum circuits.

3.
Nat Comput Sci ; 3(6): 542-551, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38177434

RESUMO

The prospect of achieving quantum advantage with quantum neural networks (QNNs) is exciting. Understanding how QNN properties (for example, the number of parameters M) affect the loss landscape is crucial to designing scalable QNN architectures. Here we rigorously analyze the overparametrization phenomenon in QNNs, defining overparametrization as the regime where the QNN has more than a critical number of parameters Mc allowing it to explore all relevant directions in state space. Our main results show that the dimension of the Lie algebra obtained from the generators of the QNN is an upper bound for Mc, and for the maximal rank that the quantum Fisher information and Hessian matrices can reach. Underparametrized QNNs have spurious local minima in the loss landscape that start disappearing when M ≥ Mc. Thus, the overparametrization onset corresponds to a computational phase transition where the QNN trainability is greatly improved. We then connect the notion of overparametrization to the QNN capacity, so that when a QNN is overparametrized, its capacity achieves its maximum possible value.

4.
Phys Rev Lett ; 129(19): 190501, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399750

RESUMO

In a standard quantum sensing (QS) task one aims at estimating an unknown parameter θ, encoded into an n-qubit probe state, via measurements of the system. The success of this task hinges on the ability to correlate changes in the parameter to changes in the system response R(θ) (i.e., changes in the measurement outcomes). For simple cases the form of R(θ) is known, but the same cannot be said for realistic scenarios, as no general closed-form expression exists. In this Letter, we present an inference-based scheme for QS. We show that, for a general class of unitary families of encoding, R(θ) can be fully characterized by only measuring the system response at 2n+1 parameters. This allows us to infer the value of an unknown parameter given the measured response, as well as to determine the sensitivity of the scheme, which characterizes its overall performance. We show that inference error is, with high probability, smaller than δ, if one measures the system response with a number of shots that scales only as Ω(log^{3}(n)/δ^{2}). Furthermore, the framework presented can be broadly applied as it remains valid for arbitrary probe states and measurement schemes, and, even holds in the presence of quantum noise. We also discuss how to extend our results beyond unitary families. Finally, to showcase our method we implement it for a QS task on real quantum hardware, and in numerical simulations.

5.
Nat Commun ; 13(1): 4919, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995777

RESUMO

Modern quantum machine learning (QML) methods involve variationally optimizing a parameterized quantum circuit on a training data set, and subsequently making predictions on a testing data set (i.e., generalizing). In this work, we provide a comprehensive study of generalization performance in QML after training on a limited number N of training data points. We show that the generalization error of a quantum machine learning model with T trainable gates scales at worst as [Formula: see text]. When only K ≪ T gates have undergone substantial change in the optimization process, we prove that the generalization error improves to [Formula: see text]. Our results imply that the compiling of unitaries into a polynomial number of native gates, a crucial application for the quantum computing industry that typically uses exponential-size training data, can be sped up significantly. We also show that classification of quantum states across a phase transition with a quantum convolutional neural network requires only a very small training data set. Other potential applications include learning quantum error correcting codes or quantum dynamical simulation. Our work injects new hope into the field of QML, as good generalization is guaranteed from few training data.

6.
Phys Rev Lett ; 128(18): 180505, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594093

RESUMO

Several architectures have been proposed for quantum neural networks (QNNs), with the goal of efficiently performing machine learning tasks on quantum data. Rigorous scaling results are urgently needed for specific QNN constructions to understand which, if any, will be trainable at a large scale. Here, we analyze the gradient scaling (and hence the trainability) for a recently proposed architecture that we call dissipative QNNs (DQNNs), where the input qubits of each layer are discarded at the layer's output. We find that DQNNs can exhibit barren plateaus, i.e., gradients that vanish exponentially in the number of qubits. Moreover, we provide quantitative bounds on the scaling of the gradient for DQNNs under different conditions, such as different cost functions and circuit depths, and show that trainability is not always guaranteed. Our work represents the first rigorous analysis of the scalability of a perceptron-based QNN.


Assuntos
Algoritmos , Redes Neurais de Computação , Aprendizado de Máquina
7.
Phys Rev E ; 105(3-2): 035302, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428080

RESUMO

There is great interest in using near-term quantum computers to simulate and study foundational problems in quantum mechanics and quantum information science, such as the scrambling measured by an out-of-time-ordered correlator (OTOC). Here we use an IBM Q processor, quantum error mitigation, and weaved Trotter simulation to study high-resolution operator spreading in a four-spin Ising model as a function of space, time, and integrability. Reaching four spins while retaining high circuit fidelity is made possible by the use of a physically motivated fixed-node variant of the OTOC, allowing scrambling to be estimated without overhead. We find clear signatures of a ballistic operator spreading in a chaotic regime, as well as operator localization in an integrable regime. The techniques developed and demonstrated here open up the possibility of using cloud-based quantum computers to study and visualize scrambling phenomena, as well as quantum information dynamics more generally.

8.
Phys Rev Lett ; 128(7): 070501, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244415

RESUMO

The no-free-lunch (NFL) theorem is a celebrated result in learning theory that limits one's ability to learn a function with a training dataset. With the recent rise of quantum machine learning, it is natural to ask whether there is a quantum analog of the NFL theorem, which would restrict a quantum computer's ability to learn a unitary process with quantum training data. However, in the quantum setting, the training data can possess entanglement, a strong correlation with no classical analog. In this Letter, we show that entangled datasets lead to an apparent violation of the (classical) NFL theorem. This motivates a reformulation that accounts for the degree of entanglement in the training set. As our main result, we prove a quantum NFL theorem whereby the fundamental limit on the learnability of a unitary is reduced by entanglement. We employ Rigetti's quantum computer to test both the classical and quantum NFL theorems. Our Letter establishes that entanglement is a commodity in quantum machine learning.

9.
Nat Comput Sci ; 2(9): 567-576, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38177473

RESUMO

At the intersection of machine learning and quantum computing, quantum machine learning has the potential of accelerating data analysis, especially for quantum data, with applications for quantum materials, biochemistry and high-energy physics. Nevertheless, challenges remain regarding the trainability of quantum machine learning models. Here we review current methods and applications for quantum machine learning. We highlight differences between quantum and classical machine learning, with a focus on quantum neural networks and quantum deep learning. Finally, we discuss opportunities for quantum advantage with quantum machine learning.


Assuntos
Metodologias Computacionais , Teoria Quântica , Análise de Dados , Aprendizado de Máquina , Redes Neurais de Computação
10.
Nat Commun ; 12(1): 6961, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845216

RESUMO

Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits n if the depth of the ansatz grows linearly with n. These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model.

11.
Phys Rev Lett ; 127(14): 140501, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652179

RESUMO

Multipartite entanglement is an essential resource for quantum communication, quantum computing, quantum sensing, and quantum networks. The utility of a quantum state |ψ⟩ for these applications is often directly related to the degree or type of entanglement present in |ψ⟩. Therefore, efficiently quantifying and characterizing multipartite entanglement is of paramount importance. In this work, we introduce a family of multipartite entanglement measures, called concentratable entanglements. Several well-known entanglement measures are recovered as special cases of our family of measures, and hence we provide a general framework for quantifying multipartite entanglement. We prove that the entire family does not increase, on average, under local operations and classical communications. We also provide an operational meaning for these measures in terms of probabilistic concentration of entanglement into Bell pairs. Finally, we show that these quantities can be efficiently estimated on a quantum computer by implementing a parallelized SWAP test, opening up a research direction for measuring multipartite entanglement on quantum devices.

12.
Phys Rev Lett ; 126(19): 190501, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047576

RESUMO

Scrambling processes, which rapidly spread entanglement through many-body quantum systems, are difficult to investigate using standard techniques, but are relevant to quantum chaos and thermalization. In this Letter, we ask if quantum machine learning (QML) could be used to investigate such processes. We prove a no-go theorem for learning an unknown scrambling process with QML, showing that it is highly probable for any variational Ansatz to have a barren plateau landscape, i.e., cost gradients that vanish exponentially in the system size. This implies that the required resources scale exponentially even when strategies to avoid such scaling (e.g., from Ansatz-based barren plateaus or no-free-lunch theorems) are employed. Furthermore, we numerically and analytically extend our results to approximate scramblers. Hence, our work places generic limits on the learnability of unitaries when lacking prior information.

13.
Nat Commun ; 12(1): 1791, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741913

RESUMO

Variational quantum algorithms (VQAs) optimize the parameters θ of a parametrized quantum circuit V(θ) to minimize a cost function C. While VQAs may enable practical applications of noisy quantum computers, they are nevertheless heuristic methods with unproven scaling. Here, we rigorously prove two results, assuming V(θ) is an alternating layered ansatz composed of blocks forming local 2-designs. Our first result states that defining C in terms of global observables leads to exponentially vanishing gradients (i.e., barren plateaus) even when V(θ) is shallow. Hence, several VQAs in the literature must revise their proposed costs. On the other hand, our second result states that defining C with local observables leads to at worst a polynomially vanishing gradient, so long as the depth of V(θ) is [Formula: see text]. Our results establish a connection between locality and trainability. We illustrate these ideas with large-scale simulations, up to 100 qubits, of a quantum autoencoder implementation.

14.
Nat Comput Sci ; 1(6): 389-390, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38217240
15.
Nat Commun ; 10(1): 3438, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366888

RESUMO

Although quantum computers are predicted to have many commercial applications, less attention has been given to their potential for resolving foundational issues in quantum mechanics. Here we focus on quantum computers' utility for the Consistent Histories formalism, which has previously been employed to study quantum cosmology, quantum paradoxes, and the quantum-to-classical transition. We present a variational hybrid quantum-classical algorithm for finding consistent histories, which should revitalize interest in this formalism by allowing classically impossible calculations to be performed. In our algorithm, the quantum computer evaluates the decoherence functional (with exponential speedup in both the number of qubits and the number of times in the history) and a classical optimizer adjusts the history parameters to improve consistency. We implement our algorithm on a cloud quantum computer to find consistent histories for a spin in a magnetic field and on a simulator to observe the emergence of classicality for a chiral molecule.

16.
Phys Rev Lett ; 122(10): 100401, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932624

RESUMO

Energy-time uncertainty plays an important role in quantum foundations and technologies, and it was even discussed by the founders of quantum mechanics. However, standard approaches (e.g., Robertson's uncertainty relation) do not apply to energy-time uncertainty because, in general, there is no Hermitian operator associated with time. Following previous approaches, we quantify time uncertainty by how well one can read off the time from a quantum clock. We then use entropy to quantify the information-theoretic distinguishability of the various time states of the clock. Our main result is an entropic energy-time uncertainty relation for general time-independent Hamiltonians, stated for both the discrete-time and continuous-time cases. Our uncertainty relation is strong, in the sense that it allows for a quantum memory to help reduce the uncertainty, and this formulation leads us to reinterpret it as a bound on the relative entropy of asymmetry. Because of the operational relevance of entropy, we anticipate that our uncertainty relation will have information-processing applications.

17.
Nat Commun ; 7: 11712, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27198739

RESUMO

Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study 'unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown.

18.
Nat Commun ; 5: 5814, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524138

RESUMO

Interferometers capture a basic mystery of quantum mechanics: a single particle can exhibit wave behaviour, yet that wave behaviour disappears when one tries to determine the particle's path inside the interferometer. This idea has been formulated quantitatively as an inequality, for example, by Englert and Jaeger, Shimony and Vaidman, which upper bounds the sum of the interference visibility and the path distinguishability. Such wave-particle duality relations (WPDRs) are often thought to be conceptually inequivalent to Heisenberg's uncertainty principle, although this has been debated. Here we show that WPDRs correspond precisely to a modern formulation of the uncertainty principle in terms of entropies, namely, the min- and max-entropies. This observation unifies two fundamental concepts in quantum mechanics. Furthermore, it leads to a robust framework for deriving novel WPDRs by applying entropic uncertainty relations to interferometric models. As an illustration, we derive a novel relation that captures the coherence in a quantum beam splitter.

19.
Phys Rev Lett ; 108(21): 210405, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003225

RESUMO

Uncertainty relations provide constraints on how well the outcomes of incompatible measurements can be predicted, and as well as being fundamental to our understanding of quantum theory, they have practical applications such as for cryptography and witnessing entanglement. Here we shed new light on the entropic form of these relations, showing that they follow from a few simple properties, including the data-processing inequality. We prove these relations without relying on the exact expression for the entropy, and hence show that a single technique applies to several entropic quantities, including the von Neumann entropy, min- and max-entropies, and the Rényi entropies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA