Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 274, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448454

RESUMO

Forest biomass is an essential resource in relation to the green transition and its assessment is key for the sustainable management of forest resources. Here, we present a forest biomass dataset for Europe based on the best available inventory and satellite data, with a higher level of harmonisation and spatial resolution than other existing data. This database provides statistics and maps of the forest area, biomass stock and their share available for wood supply in the year 2020, and statistics on gross and net volume increment in 2010-2020, for 38 European countries. The statistics of most countries are available at a sub-national scale and are derived from National Forest Inventory data, harmonised using common reference definitions and estimation methodology, and updated to a common year using a modelling approach. For those counties without harmonised statistics, data were derived from the State of Europe's Forest 2020 Report at the national scale. The maps are coherent with the statistics and depict the spatial distribution of the forest variables at 100 m resolution.


Assuntos
Florestas , Madeira , Biomassa , Bases de Dados Factuais , Europa (Continente)
2.
Tree Physiol ; 25(7): 813-23, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15870051

RESUMO

We modeled the effects of climate change and two forest management scenarios on wood production and forest carbon balance in French forests using process-based models of forest growth. We combined data from the national forest inventory and soil network survey, which were aggregated over a 50 x 50-km grid, i.e., the spatial resolution of the climate scenario data. We predicted and analyzed the climate impact on potential forest production over the period 1960-2100. All models predicted a slight increase in potential forest yield until 2030-2050, followed by a plateau or a decline around 2070-2100, with overall, a greater increase in yield in northern France than in the south. Gross and net primary productivities were more negatively affected by soil water and atmospheric water vapor saturation deficits in western France because of a more pronounced shift in seasonal rainfall from summer to winter. The rotation-averaged values of carbon flux and production for different forest management options were estimated during four years (1980, 2015, 2045 and 2080). Predictions were made using a two-dimensional matrix covering the range of local soil and climate conditions. The changes in ecosystem fluxes and forest production were explained by the counterbalancing effect of rising CO2 concentration and increasing water deficit. The effect of climate change decreased with rotation length from short rotations with high production rates and low standing biomasses to long rotations with low productivities and greater standing biomasses. Climate effects on productivity, both negative and positive, were greatest on high fertility sites. Forest productivity in northern France was enhanced by climate change, increasingly from west to east, whereas in the southwestern Atlantic region, productivity was reduced by climate change to an increasing degree from west to east.


Assuntos
Efeito Estufa , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Simulação por Computador , Ecossistema , Agricultura Florestal , França , Árvores/anatomia & histologia , Árvores/fisiologia , Água/metabolismo , Madeira/anatomia & histologia , Madeira/crescimento & desenvolvimento , Madeira/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA