Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36000289

RESUMO

In fish otoliths, CaCO3 normally precipitates as aragonite, and more rarely as vaterite or calcite. A higher incidence of vaterite deposition in otoliths from aquaculture-reared fish has been reported and it is thought that high growth rates under farming conditions might promote its deposition. To test this hypothesis, otoliths from growth hormone (GH) transgenic coho salmon and non-transgenic fish of matching size were compared. Once morphometric parameters were normalized by animal length, we found that transgenic fish otoliths were smaller (-24%, -19%, -20% and -30% for length, width, perimeter and area, respectively; P<0.001) and rounder (-12%, +13.5%, +15% and -15.5% in circularity, form factor, roundness and ellipticity; P<0.001) than otoliths from non-transgenic fish of matching size. Interestingly, transgenic fish had smaller eyes (-30% eye diameter) and showed a strong correlation between eye and otolith size. We also found that the percentage of otoliths showing vaterite deposition was significantly smaller in transgenic fish (21-28%) than in non-transgenic fish (69%; P<0.001). Likewise, the area affected by vaterite deposition within individual otoliths was reduced in transgenic fish (21-26%) compared with non-transgenic fish (42.5%; P<0.001). Our results suggest that high growth rates per se are not sufficient to cause vaterite deposition in all cases, and that GH overexpression might have a protective role against vaterite deposition, a hypothesis that needs further investigation.


Assuntos
Oncorhynchus kisutch , Animais , Animais Geneticamente Modificados , Carbonato de Cálcio , Peixes , Hormônio do Crescimento/genética , Incidência , Oncorhynchus kisutch/genética , Membrana dos Otólitos
2.
BMC Genomics ; 23(1): 93, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105312

RESUMO

BACKGROUND: The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS: Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION: Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.


Assuntos
Anfioxos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Insulina , Anfioxos/genética , Músculos , Mioblastos , Transcriptoma , Vertebrados/genética
3.
Fish Physiol Biochem ; 47(6): 1879-1891, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34585317

RESUMO

To date the study of ocean acidification on fish otolith formation has been mainly focused on larval and juvenile stages. In the present pilot study, wild-captured adult Atlantic cod (Gadus morhua) were exposed to two different levels of pCO2, 422µatm (ambient, low pCO2) or 1091µatm (high pCO2), for a period of 30 weeks (from mid-October to early April 2014-2015) in order to study the effects on otolith size, shape and CaCO3 crystallization amongst other biological parameters. We found that otoliths from cod exposed to high pCO2 were slightly smaller (- 3.4% in length; - 3.3% in perimeter), rounder (- 2.9% circularity and + 4% roundness) but heavier (+ 5%) than the low pCO2 group. Interestingly, there were different effects in males and females; for instance, male cods exposed to high pCO2 exhibited significant changes in circularity (- 3%) and roundness (+ 4%) compared to the low pCO2 males, but without significant changes on otolith dimensions, while females exposed to high pCO2 had smaller otoliths as shown for length (- 5.6%), width (- 2%), perimeter (- 3.5%) and area (- 4.8%). Furthermore, while the majority of the otoliths analysed showed normal aragonite deposition, 10% of fish exposed to 1091µatm of pCO2 had an abnormal accretion of calcite, suggesting a shift on calcium carbonate polymorph crystallization in some individuals under high pCO2 conditions. Our preliminary results indicate that high levels of pCO2 in adult Atlantic cod might affect otolith growth in a gender-specific way. Our findings reveal that otoliths from adult cod are affected by ocean acidification, and we believe that the present study will prompt further research into this currently under-explored area.


Assuntos
Carbonato de Cálcio , Dióxido de Carbono/efeitos adversos , Gadus morhua , Membrana dos Otólitos , Animais , Carbonato de Cálcio/química , Feminino , Concentração de Íons de Hidrogênio , Masculino , Membrana dos Otólitos/crescimento & desenvolvimento , Projetos Piloto , Água do Mar/química
4.
Mol Biol Evol ; 37(10): 2966-2982, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32520990

RESUMO

The evolutionary transition from invertebrates to vertebrates involved extensive gene duplication, but understanding precisely how such duplications contributed to this transition requires more detailed knowledge of specific cases of genes and gene families. Myogenic differentiation (MyoD) has long been recognized as a master developmental control gene and member of the MyoD family of bHLH transcription factors (myogenic regulatory factors [MRFs]) that drive myogenesis across the bilaterians. Phylogenetic reconstructions within this gene family are complicated by multiple instances of gene duplication and loss in several lineages. Following two rounds of whole-genome duplication (2R WGD) at the origin of the vertebrates, the ancestral function of MRFs is thought to have become partitioned among the daughter genes, so that MyoD and Myf5 act early in myogenic determination, whereas Myog and Myf6 are expressed later, in differentiating myoblasts. Comparing chordate MRFs, we find an independent expansion of MRFs in the invertebrate chordate amphioxus, with evidence for a parallel instance of subfunctionalization relative to that of vertebrates. Conserved synteny between chordate MRF loci supports the 2R WGD events as a major force in shaping the evolution of vertebrate MRFs. We also resolve vertebrate MRF complements and organization, finding a new type of vertebrate MRF gene in the process, which allowed us to infer an ancestral two-gene state in the vertebrates corresponding to the early- and late-acting types of MRFs. This necessitates a revision of previous conclusions about the simple one-to-four origin of vertebrate MRFs.


Assuntos
Evolução Molecular , Anfioxos/genética , Fatores de Regulação Miogênica/genética , Animais , Duplicação Gênica , Anfioxos/crescimento & desenvolvimento , Família Multigênica , Desenvolvimento Muscular , Sintenia
5.
Sci Rep ; 8(1): 8384, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849112

RESUMO

The effects of ocean acidification on otolith crystallization and growth rates were investigated in gilthead sea bream (Sparus aurata) larvae. Larvae were exposed to three different pH levels: pH8.2, pH7.7 and pH7.3 for a period of 18 days post-fertilization. For the first time, we demonstrate that pH has a significant impact on the carbonate polymorph composition, showing calcite in a significant percentage of individuals at low pH. Around 21% of the larvae exposed to pH7.3 showed irregular calcitic otoliths rather than commonly found round aragonitic otoliths. Calcitic otoliths showed a moderate level of heritability suggesting an important role of genetic factors. We also observed significantly larger otoliths in larvae reared at pH7.7 and pH7.3 compared to pH8.2 in both sagittae and lapilli. Our results demonstrate that otolith growth rates in gilthead sea bream larvae increase at low pH while a significant proportion of larvae are prone to the formation of calcitic otoliths at pH7.3.


Assuntos
Carbonato de Cálcio/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Membrana dos Otólitos/efeitos dos fármacos , Membrana dos Otólitos/crescimento & desenvolvimento , Dourada/metabolismo , Água do Mar/química , Animais , Fertilização , Concentração de Íons de Hidrogênio , Dourada/fisiologia
6.
Biomed Opt Express ; 5(10): 3434-42, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360362

RESUMO

Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality.

7.
Nat Methods ; 11(5): 541-4, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705473

RESUMO

Light-sheet microscopy facilitates rapid, high-contrast, volumetric imaging with minimal sample exposure. However, the rapid divergence of a traditional Gaussian light sheet restricts the field of view (FOV) that provides innate subcellular resolution. We show that the Airy beam innately yields high contrast and resolution up to a tenfold larger FOV. In contrast to the Bessel beam, which also provides an increased FOV, the Airy beam's characteristic asymmetric excitation pattern results in all fluorescence contributing positively to the contrast, enabling a step change for light-sheet microscopy.


Assuntos
Microscopia/instrumentação , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Simulação por Computador , Desenho de Equipamento , Corantes Fluorescentes/química , Luz , Microscopia/métodos , Microscopia de Fluorescência/métodos , Microesferas , Distribuição Normal , Óptica e Fotônica , Espalhamento de Radiação , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA