Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 6: 5922, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25557273

RESUMO

The high-rate sensitivity of nanostructured metallic materials demonstrated in the recent literature is related to the predominance of thermally activated deformation mechanisms favoured by a large density of internal interfaces. Here we report time-resolved high-resolution electron transmission microscopy creep tests on thin nanograined films using on-chip nanomechanical testing. Tests are performed on palladium, which exhibited unexpectedly large creep rates at room temperature. Despite the small 30-nm grain size, relaxation is found to be mediated by dislocation mechanisms. The dislocations interact with the growth nanotwins present in the grains, leading to a loss of coherency of twin boundaries. The density of stored dislocations first increases with applied deformation, and then decreases with time to drive additional deformation while no grain boundary mechanism is observed. This fast relaxation constitutes a key issue in the development of various micro- and nanotechnologies such as palladium membranes for hydrogen applications.

2.
Rev Sci Instrum ; 83(10): 105004, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126797

RESUMO

A stress relaxation method for freestanding thin films is developed based on an on-chip internal stress actuated microtensile testing set-up. The on-chip test structures are produced using microfabrication techniques involving cleaning, deposition, lithography, and release. After release from the substrate, the test specimens are subjected to uniaxial tension. The applied load decays with the deformation taking place during relaxation. This technique is adapted to strain rates lower than 10(-6)∕s and permits the determination of the strain rate sensitivity of very thin films. The main advantage of the technique is that the relaxation tests are simultaneously performed on thousands of specimens, pre-deformed up to different strain levels, for very long periods of time without monopolizing any external mechanical loading equipment. Proof of concept results are provided for 205-nm-thick sputtered AlSi(0.01) films and for 350-nm-thick evaporated Pd films showing unexpectedly high relaxation at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA