Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 11(9): 3774-3783, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39310299

RESUMO

Creating plasmonic nanoparticles on a tapered optical fiber (TF) tip enables a remote surface-enhanced Raman scattering (SERS) sensing probe, ideal for challenging sampling scenarios like biological tissues, site-specific cells, on-site environmental monitoring, and deep brain structures. However, nanoparticle patterns fabricated from current bottom-up methods are mostly random, making geometry control difficult. Uneven statistical distribution, clustering, and multilayer deposition introduce uncertainty in correlating device performance with morphology. Ultimately, this limits the design of the best-performance remote SERS sensing probe. Here we employ a tunable solid-state dewetting method to create densely packed monolayer Au nanoislands with varied geometric parameters in direct contact with the silica TF surface. These patterns exhibit analyzable nanoparticle sizes, densities, and uniform distribution across the entire taper surface, enabling a systematic investigation of particle size, density, and analyte effects on the SERS performance of the through-fiber detection system. The study is focused on the SERS response of a widely employed benchmark molecule, rhodamine 6G (R6G), and serotonin, a highly relevant neurotransmitter for the neuroscience field. The numerical simulations and limit of detection (LOD) experiments on R6G show that the increase of the total near-field enhancement volume promotes the SERS sensitivity of the probe. However, we observed a different behavior for serotonin linked to its interaction with the nanoparticle's surface. The obtained LOD is as low as 10-7 M, a value not achieved so far in a through-fiber detection scheme. Therefore, our work offers a strategy to design nanoparticle-based remote SERS sensing probes and provides new clues to discover and understand intricate plasmonic-driven chemical reactions.

2.
Neurophotonics ; 11(Suppl 1): S11513, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39119220

RESUMO

Within the realm of optical neural interfaces, the exploration of plasmonic resonances to interact with neural cells has captured increasing attention among the neuroscience community. The interplay of light with conduction electrons in nanometer-sized metallic nanostructures can induce plasmonic resonances, showcasing a versatile capability to both sense and trigger cellular events. We describe the perspective of generating propagating or localized surface plasmon polaritons on the tip of an optical neural implant, widening the possibility for neuroscience labs to explore the potential of plasmonic neural interfaces.

3.
Opt Express ; 32(11): 18896-18908, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859036

RESUMO

Artificial intelligence has emerged as promising tool to decode an image transmitted through a multimode fiber (MMF) by applying deep learning techniques. By transmitting thousands of images through the MMF, deep neural networks (DNNs) are able to decipher the seemingly random output speckle patterns and unveil the intrinsic input-output relationship. High fidelity reconstruction is obtained for datasets with a large degree of homogeneity, which underutilizes the capacity of the combined MMF-DNN system. Here, we show that holographic modulation can encode an additional layer of variance on the output speckle pattern, improving the overall transmissive capabilities of the system. Operatively, we have implemented this by adding a holographic label to the original dataset and injecting the resulting phase image into the fiber facet through a Fourier transform lens. The resulting speckle pattern dataset can be clustered primarily by holographic label, and can be reconstructed without loss of fidelity. As an application, we describe how color images may be segmented into RGB components and each color component may then be labelled by distinct hologram. A ResUNet architecture was then used to decode each class of speckle patterns and reconstruct the color image without the need for temporal synchronization between sender and receiver.

4.
PLoS One ; 18(9): e0290300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682976

RESUMO

Pre-shaping light to achieve desired amplitude distributions at the tip of a multimode fiber (MMF) has emerged as a powerful method allowing a wide range of imaging techniques to be implemented at the distal facet. Such techniques rely on measuring the transmission matrix of the optically turbid waveguide which scrambles the coherent input light into an effectively random speckle pattern. Typically, this is done by measuring the interferogram between the output speckle and a reference beam. In recent years, an optical setup where the reference beam passes through the MMF has become an attractive configuration because of the high interferometric stability of the common optical path. However, the merits and drawbacks of an internal reference beam remain controversial. The measurement of the transmission matrix is known to depend on the choice of internal reference and has been reported to result in "blind spots" due to phase singularities of the reference beam. Here, we describe how the focussing efficiency of the calibration can be increased by several percent by optimising the choice of internal reference beam.


Assuntos
Interferometria , Fibras Ópticas , Calibragem
5.
Adv Mater ; 35(11): e2200902, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36479741

RESUMO

Integration of plasmonic nanostructures with fiber-optics-based neural probes enables label-free detection of molecular fingerprints via surface-enhanced Raman spectroscopy (SERS), and it represents a fascinating technological horizon to investigate brain function. However, developing neuroplasmonic probes that can interface with deep brain regions with minimal invasiveness while providing the sensitivity to detect biomolecular signatures in a physiological environment is challenging, in particular because the same waveguide must be employed for both delivering excitation light and collecting the resulting scattered photons. Here, a SERS-active neural probe based on a tapered optical fiber (TF) decorated with gold nanoislands (NIs) that can detect neurotransmitters down to the micromolar range is presented. To do this, a novel, nonplanar repeated dewetting technique to fabricate gold NIs with sub-10 nm gaps, uniformly distributed on the wide (square millimeter scale in surface area), highly curved surface of TF is developed. It is experimentally and numerically shown that the amplified broadband near-field enhancement of the high-density NIs layer allows for achieving a limit of detection in aqueous solution of 10-7  m for rhodamine 6G and 10-5  m for serotonin and dopamine through SERS at near-infrared wavelengths. The NIs-TF technology is envisioned as a first step toward the unexplored frontier of in vivo label-free plasmonic neural interfaces.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Fibras Ópticas , Ouro/química , Análise Espectral Raman/métodos , Nanoestruturas/química , Neurotransmissores , Nanopartículas Metálicas/química
6.
Small ; 18(23): e2200975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35508706

RESUMO

Integration of plasmonic structures on step-index optical fibers is attracting interest for both applications and fundamental studies. However, the possibility to dynamically control the coupling between the guided light fields and the plasmonic resonances is hindered by the turbidity of light propagation in multimode fibers (MMFs). This pivotal point strongly limits the range of studies that can benefit from nanostructured fiber optics. Fortunately, harnessing the interaction between plasmonic modes on the fiber tip and the full set of guided modes can bring this technology to a next generation progress. Here, the intrinsic wealth of information of guided modes is exploited to spatiotemporally control the plasmonic resonances of the coupled system. This concept is shown by employing dynamic phase modulation to structure both the response of plasmonic MMFs on the plasmonic facet and their response in the corresponding Fourier plane, achieving spatial selective field enhancement and direct control of the probe's work point in the dispersion diagram. Such a conceptual leap would transform the biomedical applications of holographic endoscopic imaging by integrating new sensing and manipulation capabilities.


Assuntos
Holografia , Nanoestruturas , Tecnologia de Fibra Óptica , Nanoestruturas/química , Fibras Ópticas
7.
Sci Rep ; 10(1): 4585, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165654

RESUMO

Oligomers of pneumolysin form transmembrane channels in cholesterol-containing lipid bilayers. The mechanism of pore formation involves a multistage process in which the protein, at first, assembles into a ring-shaped complex on the outer-bilayer leaflet. In a subsequent step, the complex inserts into the membrane. Contrary to most investigations of pore formation that have focussed on protein changes, we have deduced how the lipid-packing order is altered in different stages of the pore-forming mechanism. An optical tweezing apparatus was used, in combination with microfluidics, to isolate large-unilamellar vesicles and control exposure of the bilayer to pneumolysin. By monitoring Raman-scattered light from a single-trapped liposome, the effect of the protein on short-range order and rotational diffusion of lipids could be inferred from changes in the envelope of the C-H stretch. A significant change in the lipid-packing order takes place during assembly of pre-pore oligomers. We were not able to detect a change in the lipid-packing order during the initial stage of protein binding, or any further change during the insertion of oligomers. Pre-pore complexes induce a transformation in which a bilayer, resembling a liquid-ordered phase is changed into a bilayer resembling a fluid-liquid-disordered phase surrounding ordered microdomains enriched in cholesterol and protein complexes.


Assuntos
Colesterol/metabolismo , Streptococcus pneumoniae/metabolismo , Estreptolisinas/química , Estreptolisinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colesterol/química , Hemólise , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Técnicas Analíticas Microfluídicas , Modelos Moleculares , Mutação , Pinças Ópticas , Ligação Proteica , Análise Espectral Raman , Estreptolisinas/genética , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
8.
Biophys J ; 117(9): 1589-1598, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31587827

RESUMO

Cellular plasma membrane deformability and stability is important in a range of biological processes. Changes in local curvature of the membrane affect the lateral movement of lipids, affecting the biophysical properties of the membrane. An integrated holographic optical tweezers and Raman microscope was used to investigate the effect of curvature gradients induced by optically stretching individual giant unilamellar vesicles (GUVs) on lipid packing and lateral segregation of cholesterol in the bilayer. The spatially resolved Raman analysis enabled detection of induced phase separation and changes in lipid ordering in individual GUVs. Using deuterated cholesterol, the changes in lipid ordering and phase separation were linked to lateral sorting of cholesterol in the stretched GUVs. Stretching the GUVs in the range of elongation factors 1-1.3 led to an overall decrease in cholesterol concentration at the edges compared to the center of stretched GUVs. The Raman spectroscopy results were consistent with a model of the bilayer accounting for cholesterol sorting in both bilayer leaflets, with a compositional asymmetry of 0.63 ± 0.04 in favor of the outer leaflet. The results demonstrate the potential of the integrated holographic optical tweezers-Raman technique to induce deformations to individual lipid vesicles and to simultaneously provide quantitative and spatially resolved molecular information. Future studies can extend to include more realistic models of cell membranes and potentially live cells.


Assuntos
Bicamadas Lipídicas/química , Análise Espectral Raman , Lipossomas Unilamelares/química , Colesterol/química , Pinças Ópticas
9.
Sci Rep ; 7(1): 8589, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819244

RESUMO

A spectroscopic technique is presented that is able to identify rapid changes in the bending modulus and fluidity of vesicle lipid bilayers on the micrometer scale, and distinguish between the presence and absence of heterogeneities in lipid-packing order. Individual unilamellar vesicles have been isolated using laser tweezers and, by measuring the intensity modulation of elastic back-scattered light, changes in the biophysical properties of lipid bilayers were revealed. Our approach offers unprecedented temporal resolution and, uniquely, physical transformations of lipid bilayers can be monitored on a length scale of micrometers. As an example, the deformation of a membrane bilayer following the gel-to-fluid phase transition in a pure phospholipid vesicle was observed to take place across an interval of 54 ± 5 ms corresponding to an estimated full-width of only ~1 m°C. Dynamic heterogeneities in packing order were detected in mixed-lipid bilayers. Using a ternary mixture of lipids, the modulated-intensity profile of elastic back-scattered light from an optically-trapped vesicle revealed an abrupt change in the bending modulus of the bilayer which could be associated with the dissolution of ordered microdomains (i.e., lipid rafts). This occurred across an interval of 30 ± 5 ms (equivalent to ~1 m°C).

10.
J Chem Phys ; 145(5): 054502, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27497560

RESUMO

We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 µs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA