Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; : 271678X241275760, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39161264

RESUMO

Animal attrition in preclinical experiments can introduce bias in the estimation of causal treatment effects, as the treatment-outcome association in surviving animals may not represent the causal effect of interest. This can compromise the internal validity of the study despite randomization at the outset. Directed Acyclic Graphs (DAGs) are useful tools to transparently visualize assumptions about the causal structure underlying observed data. By illustrating relationships between relevant variables, DAGs enable the detection of even less intuitive biases, and can thereby inform strategies for their mitigation. In this study, we present an illustrative causal model for preclinical stroke research, in which animal attrition induces a specific type of selection bias (i.e., collider stratification bias) due to the interplay of animal welfare, initial disease severity and negative side effects of treatment. Even when the treatment had no causal effect, our simulations revealed substantial bias across different scenarios. We show how researchers can detect and potentially mitigate this bias in the analysis phase, even when only data from surviving animals are available, if knowledge of the underlying causal process that gave rise to the data is available. Collider stratification bias should be a concern in preclinical animal studies with severe side effects and high post-randomization attrition.

2.
Expert Opin Drug Discov ; 18(11): 1273-1285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691294

RESUMO

INTRODUCTION: Translation is about successfully bringing findings from preclinical contexts into the clinic. This transfer is challenging as clinical trials frequently fail despite positive preclinical results. Limited robustness of preclinical research has been marked as one of the drivers of such failures. One suggested solution is to improve the external validity of in vitro and in vivo experiments via a suite of complementary strategies. AREAS COVERED: In this review, the authors summarize the literature available on different strategies to improve external validity in in vivo, in vitro, or ex vivo experiments; systematic heterogenization; generalizability tests; and multi-batch and multicenter experiments. Articles that tested or discussed sources of variability in systematically heterogenized experiments were identified, and the most prevalent sources of variability are reviewed further. Special considerations in sample size planning, analysis options, and practical feasibility associated with each strategy are also reviewed. EXPERT OPINION: The strategies reviewed differentially influence variation in experiments. Different research projects, with their unique goals, can leverage the strengths and limitations of each strategy. Applying a combination of these approaches in confirmatory stages of preclinical research putatively increases the chances of success in clinical studies.


Assuntos
Pesquisa Translacional Biomédica , Humanos , Pesquisa Translacional Biomédica/métodos , Estudos Multicêntricos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA