Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Curr Opin Microbiol ; 79: 102480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714141

RESUMO

In the densely populated intracellular milieu, polypeptides are at constant risk of nonspecific interactions and aggregation, posing a threat to essential cellular functions. Cells rely on a network of protein folding factors to deal with this challenge. The Hsp60 family of molecular chaperones, which depend on ATP for function, stands out in the proteostasis network by a characteristic structure comprising two multimeric rings arranged back to back. This review provides an updated overview of GroEL, the bacterial Hsp60, and its GroES (Hsp10) cofactor. Specifically, we highlight recent breakthroughs in understanding the intricate folding mechanisms of the GroEL-GroES nanomachine and explore the newly discovered interaction between GroEL and the chaperedoxin CnoX. Despite considerable research on the GroEL-GroES system, numerous questions remain to be explored.


Assuntos
Chaperonina 10 , Chaperonina 60 , Dobramento de Proteína , Chaperonina 60/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 10/metabolismo , Chaperonina 10/química , Ligação Proteica , Bactérias/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética
3.
Nature ; 626(7999): 617-625, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081298

RESUMO

The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane ß-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic ß-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate ß-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.


Assuntos
Proteínas da Membrana Bacteriana Externa , Membrana Celular , Bactérias Gram-Negativas , Bicamadas Lipídicas , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Glicina/metabolismo , Lipopolissacarídeos/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Fosfolipídeos/metabolismo , Sítios de Ligação , Proteostase , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteoma/química , Proteoma/metabolismo , Regulon , Domínios Proteicos , Peptídeos Antimicrobianos/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(14): e2215997120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976766

RESUMO

The cell envelope of gram-negative bacteria constitutes the first protective barrier between a cell and its environment. During host infection, the bacterial envelope is subjected to several stresses, including those induced by reactive oxygen species (ROS) and reactive chlorine species (RCS) produced by immune cells. Among RCS, N-chlorotaurine (N-ChT), which results from the reaction between hypochlorous acid and taurine, is a powerful and less diffusible oxidant. Here, using a genetic approach, we demonstrate that Salmonella Typhimurium uses the CpxRA two-component system to detect N-ChT oxidative stress. Moreover, we show that periplasmic methionine sulfoxide reductase (MsrP) is part of the Cpx regulon. Our findings demonstrate that MsrP is required to cope with N-ChT stress by repairing N-ChT-oxidized proteins in the bacterial envelope. By characterizing the molecular signal that induces Cpx when S. Typhimurium is exposed to N-ChT, we show that N-ChT triggers Cpx in an NlpE-dependent manner. Thus, our work establishes a direct link between N-ChT oxidative stress and the envelope stress response.


Assuntos
Proteínas de Bactérias , Salmonella typhimurium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Taurina/farmacologia , Ácido Hipocloroso/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
J Microbiol ; 61(3): 317-329, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36892778

RESUMO

The global public health burden of bacterial antimicrobial resistance (AMR) is intensified by Gram-negative bacteria, which have an additional membrane, the outer membrane (OM), outside of the peptidoglycan (PG) cell wall. Bacterial two-component systems (TCSs) aid in maintaining envelope integrity through a phosphorylation cascade by controlling gene expression through sensor kinases and response regulators. In Escherichia coli, the major TCSs defending cells from envelope stress and adaptation are Rcs and Cpx, which are aided by OM lipoproteins RcsF and NlpE as sensors, respectively. In this review, we focus on these two OM sensors. ß-Barrel assembly machinery (BAM) inserts transmembrane OM proteins (OMPs) into the OM. BAM co-assembles RcsF, the Rcs sensor, with OMPs, forming the RcsF-OMP complex. Researchers have presented two models for stress sensing in the Rcs pathway. The first model suggests that LPS perturbation stress disassembles the RcsF-OMP complex, freeing RcsF to activate Rcs. The second model proposes that BAM cannot assemble RcsF into OMPs when the OM or PG is under specific stresses, and thus, the unassembled RcsF activates Rcs. These two models may not be mutually exclusive. Here, we evaluate these two models critically in order to elucidate the stress sensing mechanism. NlpE, the Cpx sensor, has an N-terminal (NTD) and a C-terminal domain (CTD). A defect in lipoprotein trafficking results in NlpE retention in the inner membrane, provoking the Cpx response. Signaling requires the NlpE NTD, but not the NlpE CTD; however, OM-anchored NlpE senses adherence to a hydrophobic surface, with the NlpE CTD playing a key role in this function.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Lipoproteínas/genética
6.
Cell ; 186(5): 1039-1049.e17, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764293

RESUMO

Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells, constituting the paradigmatic example of molecular chaperones. Despite extensive investigations of their structure and mechanism, crucial questions regarding how these chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX, a protein combining a chaperone and a redox function. Binding of GroES (Hsp10 cofactor) to GroEL induces CnoX release. Cryoelectron microscopy provided crucial structural information on the GroEL-CnoX complex, showing that CnoX binds GroEL outside the substrate-binding site via a highly conserved C-terminal α-helix. Furthermore, we identified complexes in which CnoX, bound to GroEL, forms mixed disulfides with GroEL substrates, indicating that CnoX likely functions as a redox quality-control plugin for GroEL. Proteins sharing structural features with CnoX exist in eukaryotes, suggesting that Hsp60 molecular plugins have been conserved through evolution.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Microscopia Crioeletrônica , Chaperonas Moleculares/metabolismo , Oxirredução , Chaperoninas/química , Chaperoninas/metabolismo , Chaperonina 60/química , Chaperonina 10/metabolismo
7.
Methods Mol Biol ; 2548: 169-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151498

RESUMO

The envelope of Gram-negative bacteria is an essential compartment which is in direct contact with the environment; the envelope maintains cellular integrity and functions as a permeability barrier protecting the cell from toxic compounds. The outer layer of the envelope is an asymmetric membrane whose external leaflet is mainly composed of lipopolysaccharide molecules. Recently, there has been growing evidence that lipoproteins (i.e., soluble proteins anchored to a membrane by a lipid moiety) decorate the lipopolysaccharide leaflet in the model bacterium Escherichia coli, challenging the current paradigm that lipoproteins remain in the periplasm in this organism. However, assessing the surface exposure of lipoproteins is challenging. Here, we describe an optimized and reproducible dotblot protocol to assess the presence of lipoproteins at the surface of E. coli and other bacterial models. We added all necessary controls to reduce the possibility of artifacts giving rise to false-positive results. We selected the stress sensor RcsF as a model lipoprotein to illustrate the method, which can be used for any other lipoprotein.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Lipoproteínas/metabolismo
8.
Viruses ; 14(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35891354

RESUMO

More than two years on, the COVID-19 pandemic continues to wreak havoc around the world and has battle-tested the pandemic-situation responses of all major global governments. Two key areas of investigation that are still unclear are: the molecular mechanisms that lead to heterogenic patient outcomes, and the causes of Post COVID condition (AKA Long-COVID). In this paper, we introduce the HYGIEIA project, designed to respond to the enormous challenges of the COVID-19 pandemic through a multi-omic approach supported by network medicine. It is hoped that in addition to investigating COVID-19, the logistics deployed within this project will be applicable to other infectious agents, pandemic-type situations, and also other complex, non-infectious diseases. Here, we first look at previous research into COVID-19 in the context of the proteome, metabolome, transcriptome, microbiome, host genome, and viral genome. We then discuss a proposed methodology for a large-scale multi-omic longitudinal study to investigate the aforementioned biological strata through high-throughput sequencing (HTS) and mass-spectrometry (MS) technologies. Lastly, we discuss how a network medicine approach can be used to analyze the data and make meaningful discoveries, with the final aim being the translation of these discoveries into the clinics to improve patient care.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/complicações , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Humanos , Estudos Longitudinais , Metabolômica/métodos , Pandemias , Biologia de Sistemas/métodos , Síndrome de COVID-19 Pós-Aguda
10.
Cancer Immunol Res ; 10(6): 713-727, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35439300

RESUMO

Monoclonal antibodies (mAbs) blocking immune checkpoints such as programmed death ligand 1 (PD-L1) have yielded strong clinical benefits in many cancer types. Still, the current limitations are the lack of clinical response in a majority of patients and the development of immune-related adverse events in some. As an alternative to PD-L1-specific antibody injection, we have developed an approach based on the engineering of tumor-targeting T cells to deliver intratumorally an anti-PD-L1 nanobody. In the MC38-OVA model, our strategy enhanced tumor control as compared with injection of PD-L1-specific antibody combined with adoptive transfer of tumor-targeting T cells. As a possible explanation for this, we demonstrated that PD-L1-specific antibody massively occupied PD-L1 in the periphery but failed to penetrate to PD-L1-expressing cells at the tumor site. In sharp contrast, locally delivered anti-PD-L1 nanobody improved PD-L1 blocking at the tumor site while avoiding systemic exposure. Our approach appears promising to overcome the limitations of immunotherapy based on PD-L1-specific antibodies.


Assuntos
Antígeno B7-H1 , Neoplasias , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Linfócitos T
11.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091472

RESUMO

Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Evolução Biológica , Linhagem Celular , Regulação Viral da Expressão Gênica/genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Proteínas Imediatamente Precoces/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Viroses/genética , Viroses/metabolismo , Replicação Viral/fisiologia , Vírus/patogenicidade
12.
PLoS Genet ; 17(12): e1009586, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941903

RESUMO

The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target.


Assuntos
Parede Celular/genética , Proteínas de Escherichia coli/genética , Lipopolissacarídeos/genética , Oxirredutases/genética , Peptidoglicano/genética , Divisão Celular/genética , Membrana Celular/genética , Membrana Celular/microbiologia , Parede Celular/microbiologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Lipopolissacarídeos/biossíntese , Mutagênese , Fosfolipídeos/biossíntese , Fosfolipídeos/genética
13.
Nat Chem Biol ; 17(10): 1093-1100, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34326538

RESUMO

Gram-negative bacteria express structurally diverse lipoproteins in their cell envelope. Here, we find that approximately half of lipoproteins destined to the Escherichia coli outer membrane display an intrinsically disordered linker at their N terminus. Intrinsically disordered regions are common in proteins, but establishing their importance in vivo has remained challenging. As we sought to unravel how lipoproteins mature, we discovered that unstructured linkers are required for optimal trafficking by the Lol lipoprotein sorting system, whereby linker deletion re-routes three unrelated lipoproteins to the inner membrane. Focusing on the stress sensor RcsF, we found that replacing the linker with an artificial peptide restored normal outer-membrane targeting only when the peptide was of similar length and disordered. Overall, this study reveals the role played by intrinsic disorder in lipoprotein sorting, providing mechanistic insight into the biogenesis of these proteins and suggesting that evolution can select for intrinsic disorder that supports protein function.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Lipoproteínas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Intrinsicamente Desordenadas/química , Lipoproteínas/genética , Modelos Moleculares , Conformação Proteica , Transporte Proteico
15.
Front Mol Biosci ; 8: 681932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017858

RESUMO

How proteins fold and are protected from stress-induced aggregation is a long-standing mystery and a crucial question in biology. Here, we present the current knowledge on the chaperedoxin CnoX, a novel type of protein folding factor that combines holdase chaperone activity with a redox protective function. Focusing on Escherichia coli CnoX, we explain the essential role played by this protein under HOCl (bleach) stress, discussing how it protects its substrates from both aggregation and irreversible oxidation, which could otherwise interfere with refolding. Finally, we highlight the unique ability of CnoX, apparently conserved during evolution, to cooperate with the GroEL/ES folding machinery.

16.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673366

RESUMO

Gram-negative bacteria possess a three-layered envelope composed of an inner membrane, surrounded by a peptidoglycan (PG) layer, enclosed by an outer membrane. The envelope ensures protection against diverse hostile milieus and offers an effective barrier against antibiotics. The layers are connected to each other through many protein interactions. Bacteria evolved sophisticated machineries that maintain the integrity and the functionality of each layer. The ß-barrel assembly machinery (BAM), for example, is responsible for the insertion of the outer membrane integral proteins including the lipopolysaccharide transport machinery protein LptD. Labelling bacterial cells with BAM-specific fluorescent antibodies revealed the spatial arrangement between the machinery and the PG layer. The antibody detection of each BAM subunit required the enzymatic digestion of the PG layer. Enhancing the spacing between the outer membrane and PG does not abolish this prerequisite. This suggests that BAM locally sets the distance between OM and the PG layer. Our results shed new light on the local organization of the envelope.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Peptidoglicano/metabolismo
17.
Curr Opin Microbiol ; 61: 25-34, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667939

RESUMO

Bacterial lipoproteins are globular proteins anchored to a membrane by a lipid moiety. By discovering new functions carried out by lipoproteins, recent research has highlighted the crucial roles played by these proteins in the cell envelope of Gram-negative bacteria. Here, after discussing the wide range of activities carried out by lipoproteins in the model bacterium Escherichia coli, we review new insights into the essential mechanisms involved in lipoprotein maturation, sorting and targeting to their final destination. A special attention will also be given to the recent identification of lipoproteins on the surface of E. coli and of other bacteria. The renewed interest in lipoproteins is driven by the need to identify novel targets for antibiotic development.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Bactérias Gram-Negativas , Lipoproteínas
18.
Nat Microbiol ; 6(1): 27-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139884

RESUMO

Gram-negative bacteria are surrounded by a cell envelope that comprises an outer membrane (OM) and an inner membrane that, together, delimit the periplasmic space, which contains the peptidoglycan (PG) sacculus. Covalent anchoring of the OM to the PG is crucial for envelope integrity in Escherichia coli. When the OM is not attached to the PG, the OM forms blebs and detaches from the cell. The Braun lipoprotein Lpp1 covalently attaches OM to the PG but is present in only a small number of γ-proteobacteria; the mechanism of OM-PG attachment in other species is unclear. Here, we report that the OM is attached to PG by covalent cross-links between the N termini of integral OM ß-barrel-shaped proteins (OMPs) and the peptide stems of PG in the α-proteobacteria Brucella abortus and Agrobacterium tumefaciens. Cross-linking is catalysed by L,D-transpeptidases and attached OMPs have a conserved alanyl-aspartyl motif at their N terminus. Mutation of the aspartate in this motif prevents OMP cross-linking and results in OM membrane instability. The alanyl-aspartyl motif is conserved in OMPs from Rhizobiales; it is therefore feasible that OMP-PG cross-links are widespread in α-proteobacteria.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella abortus/metabolismo , Peptidoglicano/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Lipoproteínas/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica/fisiologia
19.
Elife ; 92020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985973

RESUMO

OmpA, a protein commonly found in the outer membrane of Gram-negative bacteria, has served as a paradigm for the study of ß-barrel proteins for several decades. In Escherichia coli, OmpA was previously reported to form complexes with RcsF, a surface-exposed lipoprotein that triggers the Rcs stress response when damage occurs in the outer membrane and the peptidoglycan. How OmpA interacts with RcsF and whether this interaction allows RcsF to reach the surface has remained unclear. Here, we integrated in vivo and in vitro approaches to establish that RcsF interacts with the C-terminal, periplasmic domain of OmpA, not with the N-terminal ß-barrel, thus implying that RcsF does not reach the bacterial surface via OmpA. Our results suggest a novel function for OmpA in the cell envelope: OmpA competes with the inner membrane protein IgaA, the downstream Rcs component, for RcsF binding across the periplasm, thereby regulating the Rcs response.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/fisiologia , Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Transdução de Sinais , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo
20.
Nat Chem Biol ; 16(9): 1019-1025, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32572278

RESUMO

The ß-barrel assembly machinery (BAM) inserts outer membrane ß-barrel proteins (OMPs) in the outer membrane of Gram-negative bacteria. In Enterobacteriacea, BAM also mediates export of the stress sensor lipoprotein RcsF to the cell surface by assembling RcsF-OMP complexes. Here, we report the crystal structure of the key BAM component BamA in complex with RcsF. BamA adopts an inward-open conformation, with the lateral gate to the membrane closed. RcsF is lodged deep within the lumen of the BamA barrel, binding regions proposed to undergo outward and lateral opening during OMP insertion. On the basis of our structural and biochemical data, we propose a push-and-pull model for RcsF export following conformational cycling of BamA, and provide a mechanistic explanation for how RcsF uses its interaction with BamA to detect envelope stress. Our data also suggest that the flux of incoming OMP substrates is involved in the control of BAM activity.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA