Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 595(7869): 667-672, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321673

RESUMO

A variety of 'strange metals' exhibit resistivity that decreases linearly with temperature as the temperature decreases to zero1-3, in contrast to conventional metals where resistivity decreases quadratically with temperature. This linear-in-temperature resistivity has been attributed to charge carriers scattering at a rate given by h/τ = αkBT, where α is a constant of order unity, h is the Planck constant and kB is the Boltzmann constant. This simple relationship between the scattering rate and temperature is observed across a wide variety of materials, suggesting a fundamental upper limit on scattering-the 'Planckian limit'4,5-but little is known about the underlying origins of this limit. Here we report a measurement of the angle-dependent magnetoresistance of La1.6-xNd0.4SrxCuO4-a hole-doped cuprate that shows linear-in-temperature resistivity down to the lowest measured temperatures6. The angle-dependent magnetoresistance shows a well defined Fermi surface that agrees quantitatively with angle-resolved photoemission spectroscopy measurements7 and reveals a linear-in-temperature scattering rate that saturates at the Planckian limit, namely α = 1.2 ± 0.4. Remarkably, we find that this Planckian scattering rate is isotropic, that is, it is independent of direction, in contrast to expectations from 'hotspot' models8,9. Our findings suggest that linear-in-temperature resistivity in strange metals emerges from a momentum-independent inelastic scattering rate that reaches the Planckian limit.

2.
Sci Adv ; 6(17): eaaz3522, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494640

RESUMO

The Wiedemann-Franz (WF) law has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport and the topological nature of the wave function, remains an open question. Here, we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3Ge extended from room temperature down to sub-kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature and not by inelastic scattering. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The data accuracy is supported by verifying the anomalous Bridgman relation. The anomalous Lorenz ratio is thus an extremely sensitive probe of the Berry spectrum of a solid.

3.
Nat Commun ; 10(1): 3021, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289269

RESUMO

Magnetic domain walls are topological solitons whose internal structure is set by competing energies which sculpt them. In common ferromagnets, domain walls are known to be of either Bloch or Néel types. Little is established in the case of Mn3Sn, a triangular antiferromagnet with a large room-temperature anomalous Hall effect, where domain nucleation is triggered by a well-defined threshold magnetic field. Here, we show that the domain walls of this system generate an additional contribution to the Hall conductivity tensor and a transverse magnetization. The former is an electric field lying in the same plane with the magnetic field and electric current and therefore a planar Hall effect. We demonstrate that in-plane rotation of spins inside the domain wall would explain both observations and the clockwise or anticlockwise chirality of the walls depends on the history of the field orientation and can be controlled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA