Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(8): 1047, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38223922

RESUMO

Retraction of 'Carbon content drives high temperature superconductivity in a carbonaceous sulfur hydride below 100 GPa' by G. Alexander Smith et al., Chem. Commun., 2022, 58, 9064-9067, https://doi.org/10.1039/D2CC03170A.

2.
Proc Natl Acad Sci U S A ; 120(9): e2217125120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802438

RESUMO

Sodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three "hyperhydrated" sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl·17H2O (SC8.5); NaCl·13H2O (SC13)]. We found that the dissociation of Na+ and Cl- ions within these crystal lattices allows for the high incorporation of water molecules and thus explain their hyperhydration. This finding suggests that a great diversity of hyperhydrated crystalline phases of common salts might be found at similar conditions. Thermodynamic constraints indicate that SC8.5 is stable at room pressure below 235 K, and it could be the most abundant NaCl hydrate on icy moon surfaces like Europa, Titan, Ganymede, Callisto, Enceladus, or Ceres. The finding of these hyperhydrated structures represents a major update to the H2O-NaCl phase diagram. These hyperhydrated structures provide an explanation for the mismatch between the remote observations of the surface of Europa and Ganymede and previously available data on NaCl solids. It also underlines the urgent need for mineralogical exploration and spectral data on hyperhydrates at relevant conditions to help future icy world exploration by space missions.

3.
Chem Commun (Camb) ; 58(65): 9064-9067, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35837875

RESUMO

We report a previously unobserved superconducting state of the photosynthesized carbonaceous sulfur hydride (C-S-H) system with a maximum TC of 191(1) K below 100 GPa. The properties of C-S-H are dependent on carbon content, and X-ray diffraction and simulations reveal the system remains molecular-like up to 100 GPa.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 100-106, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35411849

RESUMO

The high-pressure phase-transition behaviour of metal-organic frameworks and coordination polymers upon varying degrees of X-ray irradiation are highlighted with four example studies. These show that, in certain cases, the radiation damage, while not extreme in changing unit-cell values, can impact the existence of a phase transition. In particular, pressure-induced phase transitions are suppressed after a certain absorbed dose threshold is reached for the sample. This is thought to be due to partial amorphization and/or defect formation in the sample, hindering the co-operative structural distortions needed for a phase transition. The high-pressure experiments were conducted with several crystals within the sample chamber in order to measure crystals with minimal X-ray irradiation at the highest pressures, which are compared with the crystals measured continuously upon pressure increase. Ways to minimize radiation damage are also discussed within the frame of high-pressure experiments.


Assuntos
Polímeros , Síncrotrons , Transição de Fase , Polímeros/química , Radiografia , Raios X
5.
Nanoscale Adv ; 4(2): 491-501, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35178501

RESUMO

Electrospinning is a versatile technique to produce nanofibrous membranes with applications in filtration, biosensing, biomedical and tissue engineering. The structural and therefore physical properties of electrospun fibers can be finely tuned by changing the electrospinning parameters. The large parameter window makes it challenging to optimize the properties of fibers for a specific application. Therefore, a fundamental understanding of the multiscale structure of fibers and its correlation with their macroscopic behaviors is required for the design and production of systems with dedicated applications. In this study, we demonstrate that the properties of poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-HFP) electrospun fibers can be tuned by changing the rotating drum speed used as a collector during electrospinning. Indeed, with the help of multiscale characterization techniques such as scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS), we observe that increasing the rotating drum speed not only aligns the fibers but also induces polymeric chain rearrangements at the molecular scale. Such changes result in enhanced mechanical properties and an increase of the piezoelectric ß-phase of the PVDF-HFP fiber membranes. We detect nanostructural deformation behaviors when the aligned fibrous membrane is uniaxially stretched along the fiber alignment direction, while an increase in the alignment of the fibers is observed for randomly aligned samples. This was analyzed by performing in situ SAXS measurements coupled with uniaxial tensile loading of the fibrous membranes along the fiber alignment direction. The present study shows that fibrous membranes can be produced with varying degrees of fiber orientation, piezoelectric ß-phase content, and mechanical properties by controlling the speed of the rotating drum collector during the fiber production. Such aligned fiber membranes have potential applications for neural or musculoskeletal tissue engineering.

6.
J Phys Chem Lett ; 13(7): 1833-1838, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35171613

RESUMO

The phenomenon of host-guest hydrogen bonding in clathrate hydrate crystal structures and its effect on physical and chemical properties have become subjects of extensive research. Hydrogen bonding has been studied for cubic (sI and sII) and hexagonal (sH) binary clathrates, while it has not been addressed for clathrate structures that exist at elevated pressures. Here, four acetone hydrate clathrates have been grown at high-pressure and low-temperature conditions. In situ single-crystal X-ray diffraction revealed that the synthesized phases possess already known trigonal (sTr), orthorhombic (sO), and tetragonal (sT) crystal structures as well as a previously unknown orthorhombic structure, so-called sO-II. Only sO and sII have previously been reported for acetone clathrates. Structural analysis suggests that acetone oxygens are hydrogen-bonded to the closest water oxygens of the host frameworks. Our discoveries show that clathrate hydrates hosting polar molecules are not as exotic as previously thought and could be stabilized at high-pressure conditions through hydrogen bonding.

8.
Dalton Trans ; 50(16): 5437-5441, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908998

RESUMO

Herein we report the synthesis and structures of [(CH3)2NH2]Er(HCO2)2(C2O4) and [(NH2)3C]Er(HCO2)2(C2O4), in which the inclusion of divalent oxalate ligands allows for the exclusive incorporation of A+ and B3+ cations in an ABX3 hybrid perovskite structure for the first time. We rationalise the observed thermal expansion of these materials, including negative thermal expansion, and find evidence for weak antiferromagnetic coupling in [(CH3)2NH2]Er(HCO2)2(C2O4).

9.
J Am Chem Soc ; 143(9): 3544-3554, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629831

RESUMO

The vast compositional space of Prussian blue analogues (PBAs), formula AxM[M'(CN)6]y·nH2O, allows for a diverse range of functionality. Yet, the interplay between composition and physical properties-e.g., flexibility and propensity for phase transitions-is still largely unknown, despite its fundamental and industrial relevance. Here we use variable-pressure X-ray and neutron diffraction to explore how key structural features, i.e., defects, hydration, and composition, influence the compressibility and phase behavior of PBAs. Defects enhance the flexibility, manifesting as a remarkably low bulk modulus (B0 ≈ 6 GPa) for defective PBAs. Interstitial water increases B0 and enables a pressure-induced phase transition in defective systems. Conversely, hydration does not alter the compressibility of stoichiometric MnPt(CN)6, but changes the high-pressure phase transitions, suggesting an interplay between low-energy distortions. AMnCo(CN)6 (AI = Rb, Cs) transition from F4̅3m to P4̅n2 upon compression due to octahedral tilting, and the critical pressure can be tuned by the A-site cation. At 1 GPa, the symmetry of Rb0.87Mn[Co(CN)6]0.91 is further lowered to the polar space group Pn by an improper ferroelectric mechanism. These fundamental insights aim to facilitate the rational design of PBAs for applications within a wide range of fields.

10.
Chemistry ; 27(3): 1094-1102, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33095457

RESUMO

High-pressure behavior of hexamethylenetetramine (urotropine) was studied in situ using angle-dispersive single-crystal synchrotron X-ray diffraction (XRD) and Fourier-transform infrared absorption (FTIR) spectroscopy. Experiments were conducted in various pressure-transmitting media to study the effect of deviatoric stress on phase transformations. Up to 4 GPa significant damping of molecular librations and atomic thermal motion was observed. A first-order phase transition to a tetragonal structure was observed with an onset at approximately 12.5 GPa and characterized by sluggish kinetics and considerable hysteresis upon decompression. However, it occurs only in non-hydrostatic conditions, induced by deviatoric or uniaxial stress in the sample. This behavior finds analogies in similar cubic crystals built of highly symmetric cage-like molecules and may be considered a common feature of such systems. DFT computations were performed to model urotropine equation of state and pressure dependence of vibrational modes. The first successful Hirshfeld atom refinements carried out for high-pressure diffraction data are reported. The refinements yielded more realistic C-H bond lengths than the independent atom model even though the high-pressure diffraction data are incomplete.

11.
J Am Chem Soc ; 142(44): 18907-18923, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33095990

RESUMO

Pressure-induced polymerization of aromatic compounds leads to novel materials containing sp3 carbon-bonded networks. The choice of the molecular species and the control of their arrangement in the crystal structures via intermolecular interactions, such as the arene-perfluoroarene interaction, can enable the design of target polymers. We have investigated the crystal structure compression and pressure-induced polymerization reaction kinetics of two polycyclic 1:1 arene-perfluoroarene cocrystals, naphthalene/octafluoronaphthalene (NOFN) and anthracene/octafluoronaphthalene (AOFN), up to 25 and 30 GPa, respectively, using single-crystal synchrotron X-ray diffraction, infrared spectroscopy, and theoretical computations based on density-functional theory. Our study shows the remarkable pressure stability of the parallel arene-perfluoroarene π-stacking arrangement and a reduction of the interplanar π-stacking separations by ca. 19-22% before the critical reaction distance is reached. A further strong, discontinuous, and irreversible reduction along the stacking direction at 20 GPa in NOFN (18.8%) and 25 GPa in AOFN (8.7%) indicates the pressure-induced breakdown of π-stacking by formation of σ-bonded polymers. The association of the structural distortion with the occurrence of a chemical reaction is confirmed by a high-pressure kinetic study using infrared spectroscopy, indicating one-dimensional polymer growth. Structural predictions for the fully polymerized high-pressure phases consisting of highly ordered rods of hydrofluorocarbons are presented based on theoretical computations, which are in excellent agreement with the experimentally determined unit-cell parameters. We show that the polymerization takes place along the arene-perfluoroarene π-stacking direction and that the lateral extension of the columns depends on the extension of the arene and perfluoroarene molecules.

12.
J Phys Chem C Nanomater Interfaces ; 124(11): 6337-6348, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32952769

RESUMO

We report the high-pressure behavior of two perovskite-like metal formate frameworks with the ethylammonium cation (EtAKCr and EtANaAl) and compare them to previously reported data for EtANaCr. High-pressure single-crystal X-ray diffraction and Raman data for EtAKCr show the occurrence of two high-pressure phase transitions observed at 0.75(16) and 2.4(2) GPa. The first phase transition involves strong compression and distortion of the KO6 subnetwork followed by rearrangement of the -CH2CH3 groups from the ethylammonium cations, while the second involves octahedral tilting to further reduce pore volume, accompanied by further configurational changes of the alkyl chains. Both transitions retain the ambient P21/n symmetry. We also correlate and discuss the influence of structural properties (distortion parameters, bulk modulus, tolerance factors, and compressibility) and parameters calculated by using density functional theory (vibrational entropy, site-projected phonon density of states, and hydrogen bonding energy) on the occurrence and properties of structural phase transitions observed in this class of metal formates.

13.
Dalton Trans ; 49(37): 12940-12944, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32662482

RESUMO

The spin state of the Prussian blue analogue FeIIPtIV(CN)6 is investigated in response to temperature, pressure, and X-ray irradiation. While cooling to 10 K maintains the high-spin state of FeII, compression at ambient temperature induces a first-order spin-crossover (SCO) transition with a small hysteresis loop (p↑ = 0.8 GPa, p↓ = 0.6 GPa). In addition, the high-spin to low-spin transition can be initiated at lower pressure through increased X-ray irradiation. Our study highlights a cooperative SCO with moderate pressure in a porous Prussian blue analogue.

14.
ACS Mater Lett ; 2(4): 438-445, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32296781

RESUMO

In theory, bimetallic UiO-66(Zr:Ce) and UiO-66(Zr:Hf) metal-organic frameworks (MOFs) are extremely versatile and attractive nanoporous materials as they combine the high catalytic activity of UiO-66(Ce) or UiO-66(Hf) with the outstanding stability of UiO-66(Zr). Using in situ high-pressure powder X-ray diffraction, however, we observe that this expected mechanical stability is not achieved when incorporating cerium or hafnium in UiO-66(Zr). This observation is akin to the earlier observed reduced thermal stability of UiO-66(Zr:Ce) compounds. To elucidate the atomic origin of this phenomenon, we chart the loss-of-crystallinity pressures of 22 monometallic and bimetallic UiO-66 materials and systematically isolate their intrinsic mechanical stability from their defect-induced weakening. This complementary experimental/computational approach reveals that the intrinsic mechanical stability of these bimetallic MOFs decreases nonlinearly upon cerium incorporation but remains unaffected by the zirconium: hafnium ratio. Additionally, all experimental samples suffer from defect-induced weakening, a synthesis-controlled effect that is observed to be independent of their intrinsic stability.

15.
Rev Sci Instrum ; 90(9): 095107, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575253

RESUMO

We present a new diamond anvil cell design, hereafter called mBX110, that combines both the advantages of a membrane and screws to generate high pressure. It enables studies at large-scale facilities for many synchrotron X-ray techniques and has the possibility to remotely control the pressure with the membrane as well as the use of the screws in the laboratory. It is fully compatible with various gas-loading systems as well as high/low temperature environments in the lab or at large scale facilities. The mBX110 possesses an opening angle of 85° suitable for single-crystal diffraction or Brillouin spectroscopy and a large side opening of 110° which can be used for X-ray inelastic techniques, such as X-ray Raman scattering spectroscopy, but also for X-ray emission, X-ray fluorescence, or X-ray absorption. An even larger opening of 150° can be manufactured enabling X-ray imaging tomography. We report data obtained with the mBX110 on different beamlines with single-crystal diffraction of stishovite up to 55 GPa, X-ray powder diffraction of rutile-GeO2 and tungsten to 25 GPa and 280 GPa, respectively, X-Ray Raman spectra of the Si L-edge in silica to 95 GPa, and Fe Kß X-ray emission spectra on a basalt glass to 17 GPa.

16.
Dalton Trans ; 48(25): 9072-9078, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31135000

RESUMO

We report complementary high-pressure Raman and single-crystal X-ray diffraction studies of a perovskite-like dicyanamide framework of [(C3H7)4N][Mn(N(CN)2)3] ([TPrA][Mn(dca)3]). Our studies show that the bulk modulus of the ambient pressure P4[combining macron]21c phase is B0 = 8.1(11) GPa, and the ab-plane compresses by 54.4(15) × 10-3 GPa-1 and the c-axis by 8.0(12) × 10-3 GPa-1, indicating the low stiffness of the framework and its highly anisotropic nature. [TPrA][Mn(dca)3] transforms near 0.4 GPa into the Pbcn phase. The driving forces for this symmetry change are partial ordering of the dicyanamide (dca) linkers, off-center shifts of TPrA+ cations and large changes in the columnar shifts of the MnN6 octahedra within the ab-plane. Upon further increase of pressure, [TPrA][Mn(dca)3] undergoes symmetry-lowering transitions into a monoclinic phase (space group P21/n) near 3 GPa and a triclinic phase near 5 GPa. The observed structural changes are, however, very subtle.

17.
Molecules ; 24(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067637

RESUMO

4-hydroxycyanobenzene (4HCB) is a dipolar molecule formed of an aromatic substituted benzene ring with the CN and OH functional groups at the 1 and 4 positions. In the crystalline state, it forms spiral chains via hydrogen bonding, which pack together through π - π interactions. The direct stacking of benzene rings down the a- and b-axes and its π - π interactions throughout the structure gives rise to its semiconductor properties. Here, high-pressure studies are conducted on 4HCB in order to investigate how the packing and intermolecular interactions, related to its semiconductor properties, are affected. High-pressure single-crystal X-ray diffraction was performed with helium and neon as the pressure-transmitting mediums up to 26 and 15 GPa, respectively. The pressure-dependent behaviour of 4HCB in He was dominated by the insertion of He into the structure after 2.4 GPa, giving rise to two phase transitions, and alterations in the π - π interactions above 4 GPa. 4HCB compressed in Ne displayed two phase transitions associated with changes in the orientation of the 4HCB molecules, giving rise to twice as many face-to-face packing of the benzene rings down the b-axis, which could allow for greater charge mobility. In the He loading, the hydrogen bonding interactions steadily decrease without any large deviations, while in the Ne loading, the change in 4HCB orientation causes an increase in the hydrogen bonding interaction distance. Our study highlights how the molecular packing and π - π interactions evolve with pressure as well as with He insertion.


Assuntos
Benzeno/química , Estrutura Molecular , Fenóis/química , Ligação de Hidrogênio , Radical Hidroxila/química , Pressão , Difração de Raios X
18.
Chem Commun (Camb) ; 55(20): 2964-2967, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30778470

RESUMO

Trivalent metal hypophosphites with the general formula M(H2PO2)3 (M = V, Al, Ga) adopt the ReO3 structure, with each compound displaying two structural polymorphs. High-pressure synchrotron X-ray studies reveal a pressure-driven phase transition in Ga(H2PO2)3 that can be understood on the basis of ab initio thermodynamics.

19.
Molecules ; 24(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759754

RESUMO

The roles of organic additives in the assembly and crystallisation of zeolites are still not fully understood. This is important when attempting to prepare novel frameworks to produce new zeolites. We consider 18-crown-6 ether (18C6) as an additive, which has previously been shown to differentiate between the zeolite EMC-2 (EMT) and faujasite (FAU) frameworks. However, it is unclear whether this distinction is dictated by influences on the metastable free-energy landscape or geometric templating. Using high-pressure synchrotron X-ray diffraction, we have observed that the presence of 18C6 does not impact the EMT framework flexibility-agreeing with our previous geometric simulations and suggesting that 18C6 does not behave as a geometric template. This was further studied by computational modelling using solid-state density-functional theory and lattice dynamics calculations. It is shown that the lattice energy of FAU is lower than EMT, but is strongly impacted by the presence of solvent/guest molecules in the framework. Furthermore, the EMT topology possesses a greater vibrational entropy and is stabilised by free energy at a finite temperature. Overall, these findings demonstrate that the role of the 18C6 additive is to influence the free energy of crystallisation to assemble the EMT framework as opposed to FAU.


Assuntos
Zeolitas/química , Éteres de Coroa/química , Cristalização/métodos , Pressão , Temperatura , Difração de Raios X/métodos
20.
Dalton Trans ; 48(5): 1647-1655, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30548036

RESUMO

We report a high-pressure crystallographic study of four hydrated Prussian blue analogues: M[Pt(CN)6] and M[Co(CN)6]0.67 (M = Mn2+, Cu2+) in the range 0-3 GPa. Mn[Co(CN)6]0.67 was studied by single-crystal X-ray diffraction, whereas the other systems were only available in polycrystalline form. The Mn-containing compounds undergo pressure-induced phase transitions from Fm3[combining macron]m to R3[combining macron] at ∼1.0-1.5 GPa driven by cooperative tilting of the octahedral units. No phase transition was found for the orbitally disordered Cu[Co(CN)6]0.67 up to 3 GPa. Mn[Co(CN)6]0.67 is significantly softer than the other samples, with a bulk modulus of ∼14 GPa compared to ∼35 GPa of the powdered samples. The discrepant pressure responses are discussed in terms of the presence of structural defects, Jahn-Teller distortions, and hydration. The implications for the development of polar systems are reviewed based upon our high-pressure study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA