Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 50(1): 117-125, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33290563

RESUMO

The Vector Manipulation Hypothesis (VMH) posits that phytopathogens develop strategies to enhance dissemination by mediating behavior change in insect vectors. The VMH is poorly studied in phytopathogenic bacteria, especially in systems with numerous, occasional vectors. Erwinia amylovora is a bacterial pathogen of pome fruit that produces a bacterial ooze and is mechanically vectored by insects after they feed on ooze. The blossom blight phase of the disease exhibits manipulation of honeybees, leading to enhanced transmission, but whether the same occurs during the shoot blight phase of the disease is unknown. The goal of this study was to evaluate the effect of E. amylovora on the behavior of Delia platura, a fly with a worldwide endemic presence that may transmit E. amylovora. We show that D. platura prefer infected, oozing fruit to uninfected fruit in choice tests and that preference subsides when bacterial ooze is removed from the infected fruit. Flies did not exhibit a preference between infected saplings and uninfected saplings. The volatiles of infected fruit did not attract D. platura, indicating that diseased fruit odor is not responsible for the observed preference for infected fruit. Flies did not differentiate between sapling odors until infected trees had died, at which point they preferred uninfected tree odors. This study supports previous hypotheses suggesting that E. amylovora takes advantage of existing plant-insect interactions, though it is not fully understood how significantly behavioral changes affect transmission. Additional pathosystems with occasional, nonspecific vectors should be studied to further understanding of the VMH.


Assuntos
Dípteros , Erwinia amylovora , Malus , Animais , Frutas , Doenças das Plantas
2.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126937

RESUMO

Fire blight, caused by the bacterium Erwinia amylovora, is a disease devastating the production of rosaceous crops, primarily apple and pear, with worldwide distribution. Fire blight begins in the spring when primary inoculum is produced as ooze, which consists of plant sap, E. amylovora, and exopolysaccharides. Ooze is believed to be transferred to healthy tissues by wind, rain, and insects. However, the mechanisms by which insects locate and transmit ooze are largely undocumented. The goals of this study were to investigate the biological factors affecting acquisition of E. amylovora from ooze by a model dipteran, Drosophila melanogaster, and to determine whether flies are able to mechanically transfer this bacterium after acquisition. We found that the percentage of positive flies increased as exposure time increased, but nutritional state, mating status, and sex did not significantly alter the number of positive individuals. Bacterial abundance was highly variable at all exposure times, suggesting that other biological factors play a role in acquisition. Nutritional state had a significant effect on E. amylovora abundance, and food-deprived flies had higher E. amylovora counts than satiated flies. We also demonstrated that D. melanogaster transmits E. amylovora to a selective medium surface and hypothesize that the same is possible for plant surfaces, where bacteria can persist until an opportunity to colonize the host arises. Collectively, these data suggest a more significant role for flies than previously thought in transmission of fire blight and contribute to a shift in our understanding of the E. amylovora disease cycle.IMPORTANCE A recent hypothesis proposed that dissemination of Erwinia amylovora from ooze by flies to native rosaceous trees was likely key to the life cycle of the bacterium during its evolution. Our study validates an important component of this hypothesis by showing that flies are capable of acquiring and transmitting this bacterium from ooze under various biotic conditions. Understanding how dipterans interact with ooze advances our current knowledge of its epidemiological function and provides strong evidence for an underappreciated role of flies in the disease cycle. These findings may be especially important as they pertain to shoot blight, because this stage of the disease is poorly understood and may involve a significant amount of insect activity. Broadly, this study underscores a need to consider the depth, breadth, and origin of interactions between flies and E. amylovora to better understand its epidemiology.


Assuntos
Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Erwinia amylovora/fisiologia , Doenças das Plantas/microbiologia , Animais , Feminino , Masculino , Malus/microbiologia , Pyrus/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA