Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 153: 113380, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076475

RESUMO

The intestinal tract hosts the gut microbiota (GM), actively shaping health. Bile acids(BAs) are both digestive and signaling molecules acting as hormones via the activation of farnesoid X receptor (FXR). Obstruction of bile flow initiates a cascade of pathological events ultimately leading to intestinal mucosal injury. Administration of BAs in models of obstructed bile flow counteracts these detrimental effects. Objective of this study was to investigate the effects of the novel FXR agonist 3α, 7α, 11ß-Trihydroxy-6α-ethyl-5ß-cholan-24-oic Acid (TC-100) on intestinal mucosa integrity and cecal microbiome composition after surgical bile duct ligation (BDL), a rodent model causing bile flow obstruction. Pharmacological FXR activation was accomplished by daily oral gavage with TC-100 for 5 days. 2 days after treatment initiation, BDL was performed. BAs measurement was carried out and the 16S rDNA (V5-V6 hyper-variable regions) extracted from the cecal content was sequenced. TC-100 activates Fxr in the gut-liver axis and this translated into a significant reduction of serum and bile BA pool size with a shift to a more hydrophilic composition, while signs of intestinal mucosal damage were prevented. Firmicutes:Bacteroidota ratio progressively increased from Sham Operated (SO) mice to TC-100-treated mice. LEfSe analysis showed that Verrucomicrobia, and particularly Akkermansia muciniphila (Amuc) increasingly recognized for improving gut homeostasis and immune functions, were strongly associated to TC-100-treated mice. Intriguingly, Amuc abundance was also negatively associated to cholic acid levels. Collectively, these data indicate that intestinal FXR activation by TC-100 prevents early signs of intestinal mucosal damage by modulating BA homeostasis and GM composition.


Assuntos
Ácidos e Sais Biliares , Colestase , Animais , Bile , Colestase/tratamento farmacológico , Colestase/patologia , Ácido Cólico , Modelos Animais de Doenças , Fígado/patologia , Camundongos
2.
Front Pharmacol ; 11: 603979, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613281

RESUMO

Vortioxetine is a novel multimodal antidepressant that modulates a wide range of neurotransmitters throughout the brain. Preclinical and clinical studies have shown that vortioxetine exerts positive effects on different cognitive domains and neuroprotective effects. Considering the key role of microglial cells in brain plasticity and cognition, we aimed at investigating the effects of pretreatment with vortioxetine in modulating behavioral and molecular effects induced by an immune challenge: peripheral injection of lipopolysaccharide (LPS). To this purpose, C57BL/6J male mice were first exposed to a 28-day standard diet or vortioxetine-enriched diet, which was followed by an acute immune challenge with LPS. Sickness symptoms and depressive-like behaviors (anhedonia and memory impairment) were tested 6 and 24 h after exposure to LPS, respectively. Moreover, the expressions of markers of immune activation and M1/M2 markers of microglia polarization were measured in the dorsal and ventral parts of the hippocampus. The pretreatment with vortioxetine did not affect both LPS-induced sickness behavior and anhedonia but prevented the deficit in the recognition memory induced by the immune challenge. At the transcriptional level, chronic exposure to vortioxetine did not prevent LPS-induced upregulation of proinflammatory cytokines 6 h after the immune challenge but rather seemed to potentiate the immune response to the challenge also by affecting the levels of expression of markers of microglia M1 phenotype, like cluster of differentiation (CD)14 and CD86, in an area-dependent manner. However, at the same time point, LPS injection significantly increased the expression of the M2 polarization inducer, interleukin 4, only in the hippocampus of animals chronically exposed to vortioxetine. These results demonstrate that a chronic administration of vortioxetine specifically prevents LPS-induced memory impairment, without affecting acute sickness behavior and anhedonia, and suggest that hippocampal microglia may represent a cellular target of this novel antidepressant medication. Moreover, we provide a useful model to further explore the molecular mechanisms specifically underlying cognitive impairments following an immune challenge.

3.
Neurosci Biobehav Rev ; 108: 602-616, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786320

RESUMO

The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.


Assuntos
Envelhecimento , Lymnaea , Transtornos da Memória , Memória , Modelos Animais , Neurociências , Estresse Psicológico , Pesquisa Translacional Biomédica , Envelhecimento/fisiologia , Animais , Memória/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA