RESUMO
BACKGROUND AND OBJECTIVES: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific effects. In this study, we investigated whether a disease-specific model might complement the brain-age gap (BAG) by capturing aspects unique to MS. METHODS: In this retrospective study, we collected 3D T1-weighted brain MRI scans of PwMS to build (1) a cross-sectional multicentric cohort for age and disease duration (DD) modeling and (2) a longitudinal single-center cohort of patients with early MS as a clinical use case. We trained and evaluated a 3D DenseNet architecture to predict DD from minimally preprocessed images while age predictions were obtained with the DeepBrainNet model. The brain-predicted DD gap (the difference between predicted and actual duration) was proposed as a DD-adjusted global measure of MS-specific brain damage. Model predictions were scrutinized to assess the influence of lesions and brain volumes while the DD gap was biologically and clinically validated within a linear model framework assessing its relationship with BAG and physical disability measured with the Expanded Disability Status Scale (EDSS). RESULTS: We gathered MRI scans of 4,392 PwMS (69.7% female, age: 42.8 ± 10.6 years, DD: 11.4 ± 9.3 years) from 15 centers while the early MS cohort included 749 sessions from 252 patients (64.7% female, age: 34.5 ± 8.3 years, DD: 0.7 ± 1.2 years). Our model predicted DD better than chance (mean absolute error = 5.63 years, R2 = 0.34) and was nearly orthogonal to the brain-age model (correlation between DD and BAGs: r = 0.06 [0.00-0.13], p = 0.07). Predictions were influenced by distributed variations in brain volume and, unlike brain-predicted age, were sensitive to MS lesions (difference between unfilled and filled scans: 0.55 years [0.51-0.59], p < 0.001). DD gap significantly explained EDSS changes (B = 0.060 [0.038-0.082], p < 0.001), adding to BAG (ΔR2 = 0.012, p < 0.001). Longitudinally, increasing DD gap was associated with greater annualized EDSS change (r = 0.50 [0.39-0.60], p < 0.001), with an incremental contribution in explaining disability worsening compared with changes in BAG alone (ΔR2 = 0.064, p < 0.001). DISCUSSION: The brain-predicted DD gap is sensitive to MS-related lesions and brain atrophy, adds to the brain-age paradigm in explaining physical disability both cross-sectionally and longitudinally, and may be used as an MS-specific biomarker of disease severity and progression.
Assuntos
Envelhecimento , Encéfalo , Aprendizado Profundo , Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Envelhecimento/patologia , Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Retrospectivos , Estudos Transversais , Estudos Longitudinais , Doenças Neurodegenerativas/diagnóstico por imagemRESUMO
OBJECTIVE: We investigated the effects of adding regions to current dissemination in space (DIS) criteria for multiple sclerosis (MS). METHODS: Participants underwent brain, optic nerve, and spinal cord MRI. Baseline DIS was assessed by 2017 McDonald criteria and versions including optic nerve, temporal lobe, or corpus callosum as a fifth region (requiring 2/5), a version with all regions (requiring 3/7) and optic nerve variations requiring 3/5 and 4/5 regions. Performance was evaluated against MS diagnosis (2017 McDonald criteria) during follow-up. RESULTS: Eighty-four participants were recruited (53F, 32.8 ± 7.1 years). 2017 McDonald DIS criteria were 87% sensitive (95% CI: 76-94), 73% specific (50-89), and 83% accurate (74-91) in identifying MS. Modified criteria with optic nerve improved sensitivity to 98% (91-100), with specificity 33% (13-59) and accuracy 84% (74-91). Criteria including temporal lobe showed sensitivity 94% (84-98), specificity 50% (28-72), and accuracy 82% (72-90); criteria including corpus callosum showed sensitivity 90% (80-96), specificity 68% (45-86), and accuracy 85% (75-91). Criteria adding all three regions (3/7 required) had sensitivity 95% (87-99), specificity 55% (32-76), and accuracy 85% (75-91). When requiring 3/5 regions (optic nerve as the fifth), sensitivity was 82% (70-91), specificity 77% (55-92), and accuracy 81% (71-89); with 4/5 regions, sensitivity was 56% (43-69), specificity 95% (77-100), and accuracy 67% (56-77). INTERPRETATION: Optic nerve inclusion increased sensitivity while lowering specificity. Increasing required regions in optic nerve criteria increased specificity and decreased sensitivity. Results suggest considering the optic nerve for DIS. An option of 3/5 or 4/5 regions preserved specificity, and criteria adding all three regions had highest accuracy.
Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla , Nervo Óptico , Humanos , Masculino , Feminino , Adulto , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/diagnóstico , Imageamento por Ressonância Magnética/normas , Nervo Óptico/diagnóstico por imagem , Nervo Óptico/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Sensibilidade e Especificidade , Adulto Jovem , Pessoa de Meia-IdadeRESUMO
Artificial intelligence (AI) is the branch of science aiming at creating algorithms able to carry out tasks that typically require human intelligence. In medicine, there has been a tremendous increase in AI applications thanks to increasingly powerful computers and the emergence of big data repositories. Multiple sclerosis (MS) is a chronic autoimmune condition affecting the central nervous system with a complex pathogenesis, a challenging diagnostic process strongly relying on magnetic resonance imaging (MRI) and a high and largely unexplained variability across patients. Therefore, AI applications in MS have the great potential of helping us better support the diagnosis, find markers for prognosis to eventually design more powerful randomised clinical trials and improve patient management in clinical practice and eventually understand the mechanisms of the disease. This topical review aims to summarise the recent advances in AI applied to MRI data in MS to illustrate its achievements, limitations and future directions.
Assuntos
Inteligência Artificial , Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodosRESUMO
BACKGROUND: Conventional magnetic resonance imaging (MRI) does not account for all disability in multiple sclerosis. OBJECTIVE: The objective was to assess the ability of graph metrics from diffusion-based structural connectomes to explain motor function beyond conventional MRI in early demyelinating clinically isolated syndrome (CIS). METHODS: A total of 73 people with CIS underwent conventional MRI, diffusion-weighted imaging and clinical assessment within 3 months from onset. A total of 28 healthy controls underwent MRI. Structural connectomes were produced. Differences between patients and controls were explored; clinical associations were assessed in patients. Linear regression models were compared to establish relevance of graph metrics over conventional MRI. RESULTS: Local efficiency (p = 0.045), clustering (p = 0.034) and transitivity (p = 0.036) were reduced in patients. Higher assortativity was associated with higher Expanded Disability Status Scale (EDSS) (ß = 74.9, p = 0.026) scores. Faster timed 25-foot walk (T25FW) was associated with higher assortativity (ß = 5.39, p = 0.026), local efficiency (ß = 27.1, p = 0.041) and clustering (ß = 36.1, p = 0.032) and lower small-worldness (ß = -3.27, p = 0.015). Adding graph metrics to conventional MRI improved EDSS (p = 0.045, ΔR2 = 4) and T25FW (p < 0.001, ΔR2 = 13.6) prediction. CONCLUSION: Graph metrics are relevant early in demyelination. They show differences between patients and controls and have relationships with clinical outcomes. Segregation (local efficiency, clustering, transitivity) was particularly relevant. Combining graph metrics with conventional MRI better explained disability.
Assuntos
Conectoma , Doenças Desmielinizantes , Humanos , Masculino , Feminino , Adulto , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/fisiopatologia , Pessoa de Meia-Idade , Imagem de Difusão por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Avaliação da Deficiência , Imageamento por Ressonância Magnética , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologiaRESUMO
BACKGROUND: We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability. METHODS: A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations. RESULTS: Several qMRI/volumetric differences between patients and controls were observed (p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability. CONCLUSION: Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS.
Assuntos
Medula Cervical , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Medula Cervical/patologia , Esclerose Múltipla/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Crônica Progressiva/patologia , Substância Cinzenta/patologiaRESUMO
BACKGROUND: Multiple sclerosis cortical lesions are areas of demyelination and neuroaxonal loss. Retinal layer thickness, measured with optical coherence tomography (OCT), is an emerging biomarker of neuroaxonal loss. Studies have reported correlations between cortical lesions and retinal layer thinning in established multiple sclerosis, suggesting a shared pathophysiological process. Here, we assessed the correlation between cortical lesions and OCT metrics at the onset of multiple sclerosis, examining, for the first time, associations with physical or cognitive disability. OBJECTIVE: To examine the relationship between cortical lesions, optic nerve and retinal layer thicknesses, and physical and cognitive disability at the first demyelinating event. METHODS: Thirty-nine patients and 22 controls underwent 3T-MRI, optical coherence tomography, and clinical tests. We identified cortical lesions on phase-sensitive inversion recovery sequences, including occipital cortex lesions. We measured the estimated total intracranial volume and the white matter lesion volume. OCT metrics included peripapillary retinal nerve fibre layer (pRNFL), ganglion cell and inner plexiform layer (GCIPL) and inner nuclear layer (INL) thicknesses. RESULTS: Higher total cortical and leukocortical lesion volumes correlated with thinner pRNFL (B = -0.0005, 95 % CI -0.0008 to -0.0001, p = 0.01; B = -0.0005, 95 % CI -0.0008 to -0.0001, p = 0.01, respectively). Leukocortical lesion number correlated with colour vision deficits (B = 0.58, 95 %CI 0.039 to 1,11, p = 0.036). Thinner GCIPL correlated with a higher Expanded Disability Status Scale (B = -0.06, 95 % CI -1.1 to -0.008, p = 0.026). MS diagnosis (n = 18) correlated with higher cortical and leukocortical lesion numbers (p = 0.004 and p = 0.003), thinner GCIPL (p = 0.029) and INL (p = 0.041). CONCLUSION: The association between cortical lesions and axonal damage in the optic nerve reinforces the role of neurodegenerative processes in MS pathogenesis at onset.
Assuntos
Esclerose Múltipla , Degeneração Retiniana , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Células Ganglionares da Retina/patologia , Retina/patologia , Nervo Óptico/patologia , Degeneração Retiniana/etiologia , Tomografia de Coerência ÓpticaRESUMO
BACKGROUND AND OBJECTIVES: The optic nerve is not one of the areas of the CNS that can be used to demonstrate dissemination in space (DIS) within the 2017 McDonald criteria for the diagnosis of multiple sclerosis (MS). Objectives were (1) to assess whether optic nerve-MRI (ON-MRI), optical coherence tomography (OCT), and visual evoked potentials (VEP) detect optic nerve involvement in clinically isolated syndrome (CIS) and (2) to evaluate the contribution of the optic nerve topography to the current diagnostic criteria in a prospective, multicenter cohort. METHODS: MAGNIMS centers were invited to provide prospective data on patients with CIS who underwent a visual assessment with at least 2 of 3 investigations (ON-MRI, OCT, or VEP) within 6 months of onset. Modified DIS criteria were constructed by adding the optic nerve topography, defined by each investigation separately and any combination of them, as the fifth area of the CNS. A risk assessment analysis and the performance of the different DIS criteria were analyzed using the diagnosis of MS according to the 2017 McDonald criteria as the primary outcome and new T2 lesions and/or a second relapse as the secondary outcome. RESULTS: We included 157 patients with CIS from 5 MAGNIMS centers; 60/157 (38.2%) patients presented with optic neuritis. Optic nerve involvement on ON-MRI was found in 40.2% patients at study entry and in 72.5% of those with optic neuritis.At follow-up (mean 27.9 months, SD 14.5), 111/157 patients (70.7%) were diagnosed with MS according to the 2017 McDonald criteria. Fulfilling either 2017 DIS or any modified DIS criteria conferred a similar high risk for reaching primary and secondary outcomes. The modified DIS criteria had higher sensitivity (92.5% [with ON-MRI] vs 88.2%), but slightly lower specificity (80.0% [with GCIPL IEA ≥4 µm] vs 82.2%), with overall similar accuracy (86.6% [with ON-MRI] vs 86.5%) than 2017 DIS criteria. Consistent results were found for secondary outcomes. DISCUSSION: In patients with CIS, the presence of an optic nerve lesion defined by MRI, OCT, or VEP is frequently detected, especially when presenting with optic neuritis. Our study supports the addition of the optic nerve as a fifth topography to fulfill DIS criteria.
Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Neurite Óptica , Humanos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/diagnóstico por imagem , Potenciais Evocados Visuais , Estudos Prospectivos , Nervo Óptico/diagnóstico por imagem , Neurite Óptica/diagnóstico por imagemRESUMO
The identification of prognostic markers in early multiple sclerosis (MS) is challenging and requires reliable measures that robustly predict future disease trajectories. Ideally, such measures should make inferences at the individual level to inform clinical decisions. This study investigated the prognostic value of longitudinal structural networks to predict 5-year Expanded Disability Status Scale (EDSS) progression in patients with relapsing-remitting MS (RRMS). We hypothesized that network measures, derived from MRI, outperform conventional MRI measurements at identifying patients at risk of developing disability progression. This longitudinal, multicentre study within the Magnetic Resonance Imaging in MS (MAGNIMS) network included 406 patients with RRMS (mean age = 35.7 ± 9.1 years) followed up for 5 years (mean follow-up = 5.0 ± 0.6 years). EDSS was determined to track disability accumulation. A group of 153 healthy subjects (mean age = 35.0 ± 10.1 years) with longitudinal MRI served as controls. All subjects underwent MRI at baseline and again 1 year after baseline. Grey matter atrophy over 1 year and white matter lesion load were determined. A single-subject brain network was reconstructed from T1-weighted scans based on grey matter atrophy measures derived from a statistical parameter mapping-based segmentation pipeline. Key topological measures, including network degree, global efficiency and transitivity, were calculated at single-subject level to quantify network properties related to EDSS progression. Areas under receiver operator characteristic (ROC) curves were constructed for grey matter atrophy and white matter lesion load, and the network measures and comparisons between ROC curves were conducted. The applied network analyses differentiated patients with RRMS who experience EDSS progression over 5 years through lower values for network degree [H(2) = 30.0, P < 0.001] and global efficiency [H(2) = 31.3, P < 0.001] from healthy controls but also from patients without progression. For transitivity, the comparisons showed no difference between the groups [H(2) = 1.5, P = 0.474]. Most notably, changes in network degree and global efficiency were detected independent of disease activity in the first year. The described network reorganization in patients experiencing EDSS progression was evident in the absence of grey matter atrophy. Network degree and global efficiency measurements demonstrated superiority of network measures in the ROC analyses over grey matter atrophy and white matter lesion load in predicting EDSS worsening (all P-values < 0.05). Our findings provide evidence that grey matter network reorganization over 1 year discloses relevant information about subsequent clinical worsening in RRMS. Early grey matter restructuring towards lower network efficiency predicts disability accumulation and outperforms conventional MRI predictors.
Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Prognóstico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia , Progressão da DoençaRESUMO
Radiologically isolated syndrome is characterised by central nervous system white-matter hyperintensities highly suggestive of multiple sclerosis in individuals without a neurological history of clinical demyelinating episodes. It probably represents the pre-symptomatic phase of clinical multiple sclerosis but is poorly understood. This mini review summarises our current knowledge regarding advanced imaging techniques in radiologically isolated syndrome that provide insights into its pathobiology and prognosis. The imaging covered will include magnetic resonance imaging-derived markers of central nervous system volumetrics, connectivity, and the central vein sign, alongside optical coherence tomography-related metrics.
RESUMO
BACKGROUND: We aimed to describe the severity of the changes in brain diffusion-based connectivity as multiple sclerosis (MS) progresses and the microstructural characteristics of these networks that are associated with distinct MS phenotypes. METHODS: Clinical information and brain MRIs were collected from 221 healthy individuals and 823 people with MS at 8 MAGNIMS centres. The patients were divided into four clinical phenotypes: clinically isolated syndrome, relapsing-remitting, secondary progressive and primary progressive. Advanced tractography methods were used to obtain connectivity matrices. Then, differences in whole-brain and nodal graph-derived measures, and in the fractional anisotropy of connections between groups were analysed. Support vector machine algorithms were used to classify groups. RESULTS: Clinically isolated syndrome and relapsing-remitting patients shared similar network changes relative to controls. However, most global and local network properties differed in secondary progressive patients compared with the other groups, with lower fractional anisotropy in most connections. Primary progressive participants had fewer differences in global and local graph measures compared with clinically isolated syndrome and relapsing-remitting patients, and reductions in fractional anisotropy were only evident for a few connections. The accuracy of support vector machine to discriminate patients from healthy controls based on connection was 81%, and ranged between 64% and 74% in distinguishing among the clinical phenotypes. CONCLUSIONS: In conclusion, brain connectivity is disrupted in MS and has differential patterns according to the phenotype. Secondary progressive is associated with more widespread changes in connectivity. Additionally, classification tasks can distinguish between MS types, with subcortical connections being the most important factor.
Assuntos
Doenças Desmielinizantes , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Fenótipo , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagemRESUMO
The visual system offers unparalleled precision in the assessment of neuroaxonal damage. With the majority of patients with multiple sclerosis (MS) experiencing afferent and efferent visual dysfunction, outcome measures capturing these deficits provide insight into neuroaxonal injury, even in those with minimal disability. Ideal for use in clinical trials, visual measures are generally inexpensive, accessible, and reproducible. Quantification of visual acuity, visual fields, visual quality of life, and electrophysiologic parameters allows assessment of function, whereas optical coherence tomography (OCT) provides reliable measures of the structural integrity of the anterior afferent visual pathway. The technology of oculomotor biometrics continues to advance, and discrete measures of fixation, smooth pursuit, and saccadic eye movement abnormalities are ready for inclusion in future trials of MS progression. Visual outcomes allow tracking of neuroaxonal injury and aid in distinguishing MS from diseases such as neuromyelitis optica spectrum disorder (NMOSD) or myelin oligodendrocyte glycoprotein antibody-associated diseases (MOGAD). OCT has also provided unique insights into pathophysiology, including the identification of foveal pitting in NMOSD, possibly from damage to Müller cells, which carry an abundance of aquaporin-4 channels. For some study designs, the cost-benefit ratio favors visual outcomes over more expensive MRI outcomes. With the next frontier of therapeutics focused on remyelination and neuroprotection, visual outcomes are likely to take center stage. As an international community of collaborative, committed, vision scientists, this review by the International MS Visual System Consortium (IMSVISUAL) outlines the quality standards, informatics, and framework needed to routinely incorporate vision outcomes into MS and NMOSD trials.
Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/diagnóstico , Avaliação de Resultados em Cuidados de Saúde , Transtornos da Visão/diagnóstico , Testes Visuais , Vias Visuais/diagnóstico por imagem , HumanosRESUMO
The immunoprotective role of pregnancy in multiple sclerosis (MS) has been known for decades. Conversely, there has been rich debate on the topic of breastfeeding and disease activity in MS. In clinical practice, women are often offered to restart their disease-modifying drug (DMD) soon after delivery to maintain their relapse risk protection. Limited available information about peri-partum DMD safety can discourage women to choose breastfeeding, despite the World Health Organization's recommendation to breastfeed children for the first 6 months of life exclusively. New evidence is emerging about the protective role of exclusive breastfeeding on relapse rate. Research studies shed light on the hormonal and immunological mechanisms driving the risk of relapses during pregnancy and postpartum. Finally, case reports, real-world data, and clinical trials are increasing our knowledge of the safety of DMDs for the fetus and infant. While some DMDs must be avoided, others may be considered in highly active pregnant or lactating women with MS. This mini-review conveys recent evidence regarding the protective role of exclusive breastfeeding in MS and offers clinicians practical considerations for a patient-tailored approach.
RESUMO
BACKGROUND: In this study, we hypothesized that clinically isolated syndrome-optic neuritis patients may have disturbances in neuropsychological functions related to visual processes. METHODS: Forty-two patients with optic neuritis within 3 months from onset and 13 healthy controls were assessed at baseline and 6 months with MRI (brain volumes, lesion load, and optic radiation lesion volume) and optical coherence tomography (OCT) (peripapillary retinal nerve fiber layer [RNFL], ganglion cell and inner plexiform layers [GCIPLs], and inner nuclear layer). Patients underwent the brief cognitive assessment for multiple sclerosis, high-contrast and low-contrast letter acuity, and color vision. RESULTS: At baseline, patients had impaired visual function, had GCIPL thinning in both eyes, and performed below the normative average in the visual-related tests: Symbol Digit Modalities Test and Brief Visuospatial Memory Test-Revised (BVMT-R). Over time, improvement in visual function in the affected eye was predicted by baseline GCIPL (P = 0.015), RNFL decreased, and the BVMT-R improved (P = 0.001). Improvement in BVMT-R was associated with improvement in the high-contrast letter acuity of the affected eye (P = 0.03), independently of OCT and MRI metrics. CONCLUSION: Cognitive testing, assessed binocularly, of visuospatial processing is affected after unilateral optic neuritis and improves over time with visual recovery. This is not related to structural markers of the visual or central nervous system.
Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Neurite Óptica , Cognição , Doenças Desmielinizantes/complicações , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico , Fibras Nervosas/patologia , Neurite Óptica/complicações , Neurite Óptica/diagnóstico , Tomografia de Coerência Óptica/métodosRESUMO
Background: Multiple sclerosis (MS) has traditionally been regarded as a disease confined to the central nervous system (CNS). However, neuropathological, electrophysiological, and imaging studies have demonstrated that the peripheral nervous system (PNS) is also involved, with demyelination and, to a lesser extent, axonal degeneration representing the main pathophysiological mechanisms. Aim: The purpose of this study was to assess PNS damage at the lumbar plexus and sciatic nerve anatomical locations in people with relapsing-remitting MS (RRMS) and healthy controls (HCs) in vivo using magnetisation transfer ratio (MTR), which is a known imaging biomarker sensitive to alterations in myelin content in neural tissue, and not previously explored in the context of PNS damage in MS. Method: Eleven HCs (7 female, mean age 33.6 years, range 24-50) and 15 people with RRMS (12 female, mean age 38.5 years, range 30-56) were recruited for this study and underwent magnetic resonance imaging (MRI) investigations together with clinical assessments using the expanded disability status scale (EDSS). Magnetic resonance neurography (MRN) was first used for visualisation and identification of the lumbar plexus and the sciatic nerve and MTR imaging was subsequently performed using identical scan geometry to MRN, enabling straightforward co-registration of all data to obtain global and regional mean MTR measurements. Linear regression models were used to identify differences in MTR values between HCs and people with RRMS and to identify an association between MTR measures and EDSS. Results: MTR values in the sciatic nerve of people with RRMS were found to be significantly lower compared to HCs, but no significant MTR changes were identified in the lumbar plexus of people with RRMS. The median EDSS in people with RRMS was 2.0 (range, 0-3). No relationship between the MTR measures in the PNS and EDSS were identified at any of the anatomical locations studied in this cohort of people with RRMS. Conclusion: The results from this study demonstrate the presence of PNS damage in people with RRMS and support the notion that these changes, suggestive of demyelination, maybe occurring independently at different anatomical locations within the PNS. Further investigations to confirm these findings and to clarify the pathophysiological basis of these alterations are warranted.
RESUMO
Background: Neurite orientation dispersion and density imaging (NODDI) and the spherical mean technique (SMT) are diffusion MRI methods providing metrics with sensitivity to similar characteristics of white matter microstructure. There has been limited comparison of changes in NODDI and SMT parameters due to multiple sclerosis (MS) pathology in clinical settings. Purpose: To compare group-wise differences between healthy controls and MS patients in NODDI and SMT metrics, investigating associations with disability and correlations with diffusion tensor imaging (DTI) metrics. Methods: Sixty three relapsing-remitting MS patients were compared to 28 healthy controls. NODDI and SMT metrics corresponding to intracellular volume fraction (vin), orientation dispersion (ODI and ODE), diffusivity (D) (SMT only) and isotropic volume fraction (viso) (NODDI only) were calculated from diffusion MRI data, alongside DTI metrics (fractional anisotropy, FA; axial/mean/radial diffusivity, AD/MD/RD). Correlations between all pairs of MRI metrics were calculated in normal-appearing white matter (NAWM). Associations with expanded disability status scale (EDSS), controlling for age and gender, were evaluated. Patient-control differences were assessed voxel-by-voxel in MNI space controlling for age and gender at the 5% significance level, correcting for multiple comparisons. Spatial overlap of areas showing significant differences were compared using Dice coefficients. Results: NODDI and SMT show significant associations with EDSS (standardised beta coefficient -0.34 in NAWM and -0.37 in lesions for NODDI vin; 0.38 and -0.31 for SMT ODE and vin in lesions; p < 0.05). Significant correlations in NAWM are observed between DTI and NODDI/SMT metrics. NODDI vin and SMT vin strongly correlated (r = 0.72, p < 0.05), likewise NODDI ODI and SMT ODE (r = -0.80, p < 0.05). All DTI, NODDI and SMT metrics detect widespread differences between patients and controls in NAWM (12.57% and 11.90% of MNI brain mask for SMT and NODDI vin, Dice overlap of 0.42). Data Conclusion: SMT and NODDI detect significant differences in white matter microstructure between MS patients and controls, concurring on the direction of these changes, providing consistent descriptors of tissue microstructure that correlate with disability and show alterations beyond focal damage. Our study suggests that NODDI and SMT may play a role in monitoring MS in clinical trials and practice.
RESUMO
We present a case of atypical recurrent optic neuritis. A man in his 50s presented with right optic neuritis and profound visual loss, associated with elevated inflammatory markers. Lymph-node biopsy was consistent with sarcoidosis. Aquaporin-4 antibodies were also present. Three months following corticosteroid treatment, his right optic neuritis relapsed, again with raised inflammatory markers. He was started on azathioprine and prednisolone with good effect. A dual diagnosis of sarcoidosis and neuromyelitis optica with aquaporin-4 antibodies is very rare. Long-term immunosuppression is required. The case highlights the importance of identifying the features and cause of atypical optic neuritis.
Assuntos
Neurite Óptica/diagnóstico , Sarcoidose/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/diagnóstico , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/fisiopatologia , Neurite Óptica/tratamento farmacológico , Neurite Óptica/fisiopatologia , Sarcoidose/tratamento farmacológico , Sarcoidose/fisiopatologiaRESUMO
In early multiple sclerosis, a clearer understanding of normal-brain tissue microstructural and metabolic abnormalities will provide valuable insights into its pathophysiology. We used multi-parametric quantitative MRI to detect alterations in brain tissues of patients with their first demyelinating episode. We acquired neurite orientation dispersion and density imaging [to investigate morphology of neurites (dendrites and axons)] and 23Na MRI (to estimate total sodium concentration, a reflection of underlying changes in metabolic function). In this cross-sectional study, we enrolled 42 patients diagnosed with clinically isolated syndrome or multiple sclerosis within 3 months of their first demyelinating event and 16 healthy controls. Physical and cognitive scales were assessed. At 3 T, we acquired brain and spinal cord structural scans, and neurite orientation dispersion and density imaging. Thirty-two patients and 13 healthy controls also underwent brain 23Na MRI. We measured neurite density and orientation dispersion indices and total sodium concentration in brain normal-appearing white matter, white matter lesions, and grey matter. We used linear regression models (adjusting for brain parenchymal fraction and lesion load) and Spearman correlation tests (significance level P ≤ 0.01). Patients showed higher orientation dispersion index in normal-appearing white matter, including the corpus callosum, where they also showed lower neurite density index and higher total sodium concentration, compared with healthy controls. In grey matter, compared with healthy controls, patients demonstrated: lower orientation dispersion index in frontal, parietal and temporal cortices; lower neurite density index in parietal, temporal and occipital cortices; and higher total sodium concentration in limbic and frontal cortices. Brain volumes did not differ between patients and controls. In patients, higher orientation dispersion index in corpus callosum was associated with worse performance on timed walk test (P = 0.009, B = 0.01, 99% confidence interval = 0.0001 to 0.02), independent of brain and lesion volumes. Higher total sodium concentration in left frontal middle gyrus was associated with higher disability on Expanded Disability Status Scale (rs = 0.5, P = 0.005). Increased axonal dispersion was found in normal-appearing white matter, particularly corpus callosum, where there was also axonal degeneration and total sodium accumulation. The association between increased axonal dispersion in the corpus callosum and worse walking performance implies that morphological and metabolic alterations in this structure could mechanistically contribute to disability in multiple sclerosis. As brain volumes were neither altered nor related to disability in patients, our findings suggest that these two advanced MRI techniques are more sensitive at detecting clinically relevant pathology in early multiple sclerosis.