RESUMO
Nitrogen (N) deficiency is one of the most prevalent nutrient deficiencies in plants, and has a significant impact on crop yields. In this work we aimed to develop and evaluate innovative strategies to mitigate N deficiency. We studied the effect of supplementing tomato plants grown under suboptimal N nutrition with chitosan microparticles (CS-MPs) during short- and long-term periods. We observed that the supplementation with CS-MPs prevented the reduction of aerial biomass and the elongation of lateral roots (LR) triggered by N deficiency in tomato plantlets. In addition, levels of nitrates, amino acids and chlorophyll, which decreased drastically upon N deficiency, were either partial or totally restored upon CS-MPs addition to N deficient media. Finally, we showed that CS-MPs treatments increased nitric oxide (NO) levels in root tips and caused the up-regulation of genes involved in N metabolism. Altogether, we suggest that CS-MPs enhance the growth and development of tomato plants under N deficiency through the induction of biochemical and transcriptional responses that lead to increased N metabolism. We propose treatments with CS-MPs as an efficient practice focused to mitigate the nutritional deficiencies in N impoverished soils.
Assuntos
Quitosana , Nitrogênio , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Quitosana/farmacologia , Nitrogênio/metabolismo , Nitrogênio/deficiência , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Clorofila/metabolismo , Óxido Nítrico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Aminoácidos/metabolismoRESUMO
E3 ubiquitin ligases mediate the last step of the ubiquitination pathway in the ubiquitin-proteasome system (UPS). By targeting transcriptional regulators for their turnover, E3s play a crucial role in every aspect of plant biology. In plants, SKP1/CULLIN1/F-BOX PROTEIN (SCF)-type E3 ubiquitin ligases are essential for the perception and signaling of several key hormones including auxins and jasmonates (JAs). F-box proteins, TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and CORONATINE INSENSITIVE 1 (COI1), bind directly transcriptional repressors AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) and JASMONATE ZIM-DOMAIN (JAZ) in auxin- and JAs-depending manner, respectively, which permits the perception of the hormones and transcriptional activation of signaling pathways. Redox modification of proteins mainly by S-nitrosation of cysteines (Cys) residues via nitric oxide (NO) has emerged as a valued regulatory mechanism in physiological processes requiring its rapid and versatile integration. Previously, we demonstrated that TIR1 and Arabidopsis thaliana SKP1 (ASK1) are targets of S-nitrosation, and these NO-dependent posttranslational modifications enhance protein-protein interactions and positively regulate SCFTIR1 complex assembly and expression of auxin response genes. In this work, we confirmed S-nitrosation of Cys140 in TIR1, which was associated in planta to auxin-dependent developmental and stress-associated responses. In addition, we provide evidence on the modulation of the SCFCOI1 complex by different S-nitrosation events. We demonstrated that S-nitrosation of ASK1 Cys118 enhanced ASK1-COI1 protein-protein interaction. Overexpression of non-nitrosable ask1 mutant protein impaired the activation of JA-responsive genes mediated by SCFCOI1 illustrating the functional relevance of this redox-mediated regulation in planta. In silico analysis positions COI1 as a promising S-nitrosation target, and demonstrated that plants treated with methyl JA (MeJA) or S-nitrosocysteine (NO-Cys, S-nitrosation agent) develop shared responses at a genome-wide level. The regulation of SCF components involved in hormonal perception by S-nitrosation may represent a key strategy to determine the precise time and site-dependent activation of each hormonal signaling pathway and highlights NO as a pivotal molecular player in these scenarios.
RESUMO
Agrobiotechnology challenges involve the generation of new sustainable bioactives with emerging properties as plant biostimulants with reduced environment impact. We analyzed the potential use of recently developed chitosan microparticles (CS-MP) as growth promoters of tomato which constitutes one of the most consumed vegetable crops worldwide. Treatments of tomato seeds with CS-MP improved germination and vigor index. In addition, CS-MP sustained application triggered an improvement in root and shoot biomass reinforcing tomato performance before transplanting. The level of reactive oxygen species (ROS), antioxidant enzyme activities and defense protein markers were modulated by CS-MP treatment in tomato plantlets. Analyses of ARR5:GUS and DR5:GUS transgenic reporter tomato lines highlighted the participation of cytokinin and auxin signaling pathways during tomato root promotion mediated by CS-MP. Our findings claim a high commercial potential of CS-MP to be incorporated as a sustainable input for tomato production.
Assuntos
Quitosana/química , Quitosana/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Biomassa , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Improving the root system architecture (RSA) under adverse environmental conditions by using biostimulants is emerging as a new way to boost crop productivity. Recently, we have reported the characterization of novel chitosan-based microparticles (CS-MPs) with promising biological properties as rooting agents in lettuce. In this work, we demonstrated that in contrast to bulk chitosan (CS), which exerts root growth inhibition, CS-MPs promoted root growth and development from 1 to 10 µg mL-1 without cytotoxicity effects at higher doses in Arabidopsis and lettuce seedlings. In addition, we studied the mechanistic mode of action of CS-MPs in the development of early RSA in the Arabidopsis model. CS-MPs unchained accurate and sustained spatio-temporal activation of the nuclear auxin signaling pathway. Our findings validated a promising scenario for the application of CS-MPs in the modulation of RSA to respond to changing soil environments and improve crop performance.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Quitosana/química , Quitosana/farmacologia , Ácidos Indolacéticos/farmacologia , Lactuca/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Lactuca/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Shrimp fishing industry wastes are still a main problem with high environmental impact worldwide. In this study, chitosan with ultra-high molecular weight and deacetylation degree ≥85% was obtained from shrimp fishing industry waste from Argentinean Patagonia. Chitosan based microparticles capable to entrap salicylic acid, a phytohormone known to play major role in the regulation of plant defense response against various pathogens, were prepared using TPP as crosslinker. Unloaded microparticles and microparticles loading several salicylic acid amount were fully characterized exhibiting a size between 1.57 µm and 2.45 µm. Furthermore, a good PDI, entrappment efficiencies from 59% to 98% and salicylic acid sustained release over 24 h were achieved. Chitosan based microparticles were non toxic in most of the doses applied in lettuce seedlings. Instead, microparticles can positively modulate plant growth and have the potential to improve plant defense responses. In particular salicylic acid loaded microparticles effect was very promising for its application as activators of salicylic acid dependent plant defense responses in lettuce as a model of horticultural plant species.
RESUMO
The F-box proteins (FBPs) TIR1/AFBs are the substrate recognition subunits of SKP1-cullin-F-box (SCF) ubiquitin ligase complexes and together with Aux/IAAs form the auxin co-receptor. Although tremendous knowledge on auxin perception and signaling has been gained in the last years, SCFTIR1/AFBs complex assembly and stabilization are emerging as new layers of regulation. Here, we investigated how nitric oxide (NO), through S-nitrosylation of ASK1 is involved in SCFTIR1/AFBs assembly. We demonstrate that ASK1 is S-nitrosylated and S-glutathionylated in cysteine (Cys) 37 and Cys118 residues in vitro. Both, in vitro and in vivo protein-protein interaction assays show that NO enhances ASK1 binding to CUL1 and TIR1/AFB2, required for SCFTIR1/AFB2 assembly. In addition, we demonstrate that Cys37 and Cys118 are essential residues for proper activation of auxin signaling pathway in planta. Phylogenetic analysis revealed that Cys37 residue is only conserved in SKP proteins in Angiosperms, suggesting that S-nitrosylation on Cys37 could represent an evolutionary adaption for SKP1 function in flowering plants. Collectively, these findings indicate that multiple events of redox modifications might be part of a fine-tuning regulation of SCFTIR1/AFBs for proper auxin signal transduction.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Óxido Nítrico/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Modelos Moleculares , Compostos Nitrosos/metabolismo , Mapas de Interação de Proteínas , Ubiquitina-Proteína Ligases/metabolismoRESUMO
In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient.