Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792100

RESUMO

Carbonization of biomass residues followed by activation has great potential to become a safe process for the production of various carbon materials for various applications. Demand for commercial use of biomass-based carbon materials is growing rapidly in advanced technologies, including in the energy sector, as catalysts, batteries and capacitor electrodes. In this study, carbon materials were synthesized from hardwood using two carbonization methods, followed by activation with H3PO4, KOH and NaOH and doping with nitrogen. Their chemical composition, porous structure, thermal stability and structural order of samples were studied. It was shown that, despite the differences, the synthesized carbon materials are active catalysts for oxygen reduction reactions. Among the investigated carbon materials, NaOH-activated samples exhibited the lowest Tafel slope values, of -90.6 and -88.0 mV dec-1, which are very close to the values of commercial Pt/C at -86.6 mV dec-1.

2.
Materials (Basel) ; 16(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687695

RESUMO

Nitrogen-doped activated carbons with controlled micro- and mesoporosity were obtained from wood and wastes via chemical processing using pre-treatment (pyrolysis at 500 °C and hydrothermally carbonization at 250 °C) and evaluated as oxygen reduction catalysts for further application in fuel cells. The elemental and chemical composition, structure and porosity, and types of nitrogen bonds of obtained catalyst materials were studied. The catalytic activity was evaluated in an alkaline medium using the rotating disk electrode method. It was shown that an increase in the volume of mesopores in the porous structure of a carbon catalyst promotes the diffusion of reagents and the reactions proceed more efficiently. The competitiveness of the obtained carbon materials compared to Pt/C for the reaction of catalytic oxygen reduction is shown.

3.
Materials (Basel) ; 16(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048845

RESUMO

Herein, we present a synthesis route for high-efficiency nitrogen-doped carbon materials using kraft pulping residue, black liquor, and wood charcoal as carbon sources. The synthesized nitrogen-doped carbon materials, based on black liquor and its mixture with wood charcoal, exhibited high specific surface areas (SSAs) of 2481 and 2690 m2 g-1, respectively, as well as a high volume of mesopores with an average size of 2.9-4.6 nm. The nitrogen content was approximately 3-4 at% in the synthesized nitrogen-doped carbon materials. A specific capacitance of approximately 81-142 F g-1 was achieved in a 1 M Na2SO4 aqueous solution at a current density of 0.2 A g-1. In addition, the specific capacitance retention was 99% after 1000 cycles, indicating good electrochemical stability.

4.
ACS Appl Mater Interfaces ; 7(50): 27782-95, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26615834

RESUMO

Antimony-doped tin dioxide (ATO) is considered a promising support material for Pt-based fuel cell cathodes, displaying enhanced stability over carbon-based supports. In this work, the effect of Sb segregation on the conductance and catalytic activity at Pt/ATO interface was investigated through a combined computational and experimental study. It was found that Sb-dopant atoms prefer to segregate toward the ATO/Pt interface. The deposited Pt catalysts, interestingly, not only promote Sb segregation, but also suppress the occurrence of Sb(3+) species, a charge carrier neutralizer at the interface. The conductivity of ATO was found to increase, to a magnitude close to that of activated carbon, with an increment of Sb concentration before reaching a saturation point around 10%, and then decrease, indicating that Sb enrichment at the ATO surface may not always favor an increment of the electric current. In addition, the calculation results show that the presence of Sb dopants in ATO has little effect on the catalytic activity of deposited three-layer Pt toward the oxygen reduction reaction, although subsequent alloying of Pt and Sb could lower the corresponding catalytic activity. These findings help to support future applications of ATO/Pt-based materials as possible cathodes for proton exchange membrane fuel cell applications with enhanced durability under practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA