Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 177, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122922

RESUMO

Human p97 ATPase is crucial in various cellular processes, making it a target for inhibitors to treat cancers, neurological, and infectious diseases. Triazole allosteric p97 inhibitors have been demonstrated to match the efficacy of CB-5083, an ATP-competitive inhibitor, in cellular models. However, the mechanism is not well understood. This study systematically investigates the structures of new triazole inhibitors bound to  both wild-type and disease mutant forms of p97 and measures their effects on function. These inhibitors bind at the interface of the D1 and D2 domains of each p97 subunit, shifting surrounding helices and altering the loop structures near the C-terminal α2 G helix to modulate domain-domain communications. A key structural moiety of the inhibitor affects the rotameric conformations of interacting side chains, indirectly modulating the N-terminal domain conformation in p97 R155H mutant. The differential effects of inhibitor binding to wild-type and mutant p97 provide insights into drug design with enhanced specificity, particularly for oncology applications.

2.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360842

RESUMO

IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97R155H mutant all show up configurations in ADP- or ATPγS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97R155H ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97R155H.


Assuntos
Demência Frontotemporal/metabolismo , Modelos Moleculares , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Miosite de Corpos de Inclusão/metabolismo , Osteíte Deformante/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína com Valosina/genética , Demência Frontotemporal/genética , Humanos , Microscopia Eletrônica de Transmissão , Distrofia Muscular do Cíngulo dos Membros/genética , Miosite de Corpos de Inclusão/genética , Osteíte Deformante/genética , Conformação Proteica , Proteína com Valosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA